
An Electronics Simulation and Improved Noise
Model for Milagro

Andrew Smith

Introduction

The Milagro electronics has never been part of the Milagro detector
simulation. The GEANT simulation currently only computes the arrival
times of photons at the PMT. The time of arrival of the first hit
is smeared slightly and declared to be the hit time. Likewise, the
number of PEs is simply the sum of the number of simulated photons
that reach each PMT with a little bit of smearing. Noise is added by
the application of random hits in the routine CalibrateMC(). If a noise
hit is added to a channel that is already hit by a primary, the noise hit
cancels out the air shower hit. This approach has the following
deficiencies,

1)TOT effects are not simulated. It is a common problem that late hits
will can lengthen pulses. In the data, 2 widely separated PEs can
reconstruct as 4-5 PEs because the time separation lengthens time
over threshold (TOT) measurement. This makes our charge
resolution function quite complex. It is not simply related to nPEs or
sqrt(nPEs) as one might expect, but it depends on the temporal
dynamics of the event.

2)The noise model used is highly unrealistic. Real noise is almost
entirely due to cosmic ray secondaries unrelated to the simulated
cosmic ray shower. The noise should be constructed from correlated
shower fragments, not uncorrelated random noise.

3)Noise hits that occur just prior to, during or just after the a hit can
combine with the hit to form a single modified hit. The dynamics of
this process can only be properly simulated by combining the wave
forms from the multiple PE sources.

4)Reliability of the simulation depends on it's accuracy as a
representation of the detector. The effect of an unsimulated detector
element can never be really known. The electronics are often blamed
for inconsistencies between the Monte Carlo simulation and data.
Without simulating the electronics, the arguments that they are the
culprit can never be ruled in or out.

In this memo I describe a simulation of the electronics contained in
function CalibrateMC2() which can be directly substituted for
CalibrateMC(). CalibrateMC2() utilizes the raw PMT hit times from the
GEANT simulation, combines them with simulated “noise” events and

“dark” random noise events, computes wave forms channel by channel,
simulates the multi-threshold front-end boards, the edge finder and the
calibration.

Noise Model

“Noise” events are generated using the standard GEANT Monte Carlo
simulation. Proton primaries are thrown over a 1 km squared area with
isotropic sky coverage out to theta = 70 deg. The simulated proton
events have a spectral index of -2.75 (measured by some balloon) and
are thrown from 5GeV to 100TeV. From this sample, events with at
least 1 hit in any PMT, but no more than 10 air-shower layer PMT hits
are stripped. About 20,000 of these “noise” events were generated,
and are stored in a file in the CONFIG_MILAGRO directory.

The noise hits are distributed randomly in a 5 microsecond window
encompassing the simulated event. Random hits from the noise sample
are added at a rate that will produce a 20kHz/PMT average noise hit
rate for the air-shower layer. 2kHz of random “dark” uncorrelated 1 PE
noise is also added.

After the primary event hits and noise hits are combined, the photons
arrival times are sorted and used to construct wave forms for each
PMT. The wave forms are scanned to identify the times of the crossings
of the low and high threshold discriminators. Currently, the low and
high thresholds are set at 0.25PEs and 4.0PEs respectively. The
process of scanning the waveforms in general is to slow to be
practically applicable to the Milagro data. For this reason, the single
PE waveform is approximated as having an instant rise and an
exponential fall,

Amplitude = A*exp(-t/tau).
This simple shape allows for the addition of photon amplitudes, saving
computation time.

Trigger Simulation

The list of sorted PE arrival times are used by a slightly modified
version of the VME trigger simulation called SimulateVMETrigger2().
This function uses the PE arrival times, and not the hit times as in the
old trigger simulation, to compute the trigger mask and the time of the
event trigger. This is a more accurate representation of the VME
trigger, because it allows for more than one hit in each channel, but it
still has some short comings which I will describe later.

TDC Simulation, Edge Finder and Calibration

The times of level crossings are offset by the trigger time and an
additional delay is added to approximate the delay prior to the common
stop. The times are digitized in 0.5ns bins (TDC channels) and
subtracted from 6000 to emulate the reverse time lists generated by
the real TDCs. The mock TDC data is loaded into the raw data
structures for easy access by users. Below are plots of AS layer first
edge times for this simulation and for real data. Note the lip on the
right edge. Do you know what causes it?

The lists of TDC edges are then examined, and a slimmed down version
of the edge finder is used to identify good 2 and 4 edge hits. The time
over threshold is used to compute the number of PEs, assuming all the
PEs were liberated at a single time as is done in the calibration. Also,
2 edge hits that have reconstructed PE levels higher than the high TOT
threshold are assigned the PE value equal to the high threshold. This is
also done in the real data calibrations.

Conclusion

Code to simulate the electronics has been checked into the Milagro
CVS archive, but is not the default. One can utilize this simulation by
changing the call to “CalibrateMC()” in function “CalibrateRaw()” to

Figure 1 First edge distribution for MC data. Figure 2 First edge distribution for real data.

“CalibrateMC2()”. Although it is functional, the code is still in its
testing phase. This simulation provides a nice tool, but may not be
properly optimized to best represent the Milagro data. A number of
details were left out due to lack of knowledge of the electronics that
may impact the accuracy of the results. Listed below are a number of
what I still consider to be outstanding issues with the electronics
simulation.

1)VME Trigger: The VME trigger simulation does not properly account
for multiple hits in a single PMT during a trigger window. If a PMT is
hit, a trigger pulse is generated with a width of 190ns. The old
trigger simulation assumes that each channel is hit only once and in
a 2 microsecond window, and the time is the time of the first hit. In
this improved version of the trigger simulation, if two hits are
separated by more than 190ns, they are both included in the
simulated trigger waveform. However, this is not a complete
description either, because a pair of hits in the same PMT separated
by 50ns will generate a trigger pulse of length 240ns. Neither the
new or old trigger simulations properly account for this lengthening
of trigger pulses.

2)Edge Finder: The edge finder, and the front end board edge
generators, have a number of idiosyncrasies that are not simulated.
The leading high threshold edges are delayed by ~50 counts
compared to leading low threshold edges, likewise the trailing high
and low edges are forced to be separated in time. These effects are
not simulated.

3)TDC jitter: There is no accounting for TDC measurement error. I
would assume that the accuracy of the edge times and their
digitization by the TDCs introduces an error. None is simulated.

4)Waveforms: The shape of the wave forms is simplified, and super
position is assumed to work. In reality, the pulses have a different
shape, and super position breaks down for hits containing lots of
PEs, as is illustrated by the observation of after pulsing and non-
linearity. The PMTs are also AC coupled, so the pulse amplitudes can
actually be negative.

5)Many Constants: The values for the thresholds, the single pulse
amplitude variation, the waveform exponential fall rate and many
other constants are utilized in the this simulation. The number were
chosen to be more or less sensible, but are probably not optimal.

Despite several short comings, this new electronics simulation is a
substantial improvement on the current non-simulation of the
electronics.

