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Summary
The relative merit of two low-energy simulation packages for use with

CORSIKA is called into question, including differences in resulting physics as well as
an advertised difference in necessary computation time. A brief comparison between
the two was thus carried out. They are the FLUctuating Kascade package (FLUKA)
[1] and the Gamma Hadron Electron Interaction Shower code (GHEISHA) [2].
Distributions in position and energy were examined for various combinations of
parameters and the run-time was compared for a number of simulations. Discrepancies
in the resulting particle abundances and energies are demonstrated for certain cases.

Introduction and Motivation

Of the various low-energy packages available to treat interactions below
~100GeV, GHEISHA has been used predominantly for Milagro MC simulations.
FLUKA was developed independently of CORSIKA, modified to work within it, and
is purportedly 'more advanced' than GHEISHA, using three different models, applied
in different energy regimes, to calculate hadronic cross-sections with atmospheric
components, secondary particle production, and to follow the target nucleus. The
CORSIKA manual predicts resulting computation times up to 7 times longer than
GHEISHA'. Here, the goal was to determine if the simulation results justified this
increased time and to assess any other noticeable differences in performance and
physics.

Trials were carried out in conjunction with the Very Energetic Nuclear
Scattering (VENUS) program for high energies, with the assumed transition at 80GeV.
Twenty trials were conducted with energies between 10GeV and 50TeV, simulating
between 5000 and 30000 events and with an observation altitude set at 4500m. All
showers were simulated from zenith and an angle-fitter was used to compare the
predicted particle arrival time distributions of the two packages. Identical input was
fed to both and the run times, lateral distributions and energy distributions were
compared. In addition, I hoped to confirm or deny claims by the CORSIKA authors
that the low energy muonic and hadronic components exhibited particular
discrepancies.

Simulation Results
TmmiNG oF COMPUTATIONS

In my simulations, the difference in run-time for the two packages was
not as pronounced as the CORSIKA authors had claimed. This is due to the fact that
most simulations were carried out with gammas as the primary particles and it is
expected that the EM-component of the shower represents up to 90% of the run
time. Proton showers demonstrated an appreciable timing difference. Over several
trials, FLUKA required 1.45 times longer, on average, for energies up to the
transition energy for proton showers. Higher transition energies will further increase
the run-time and above this energy the timing is a function of the chosen high-
energy package. This was confirmed by running below, at, and above the 80GeV
transition.

The run time for both FLUKA and GHEISHA was directly proportional

1 Corsika Manual, Version 6.200, from October, 2004. Pg. 82



to the number of events at a fixed energy but was especially sensitive to changes in
the low end of the simulated energy range, as would be expected.

Finally, for identical, repeated tests, GHEISHA showed a fluctuation in run
time of up to 5%, whereas FLUKA appeared more stable, with fluctuations not
exceeding 2%. This may be merely a result of other processes running on the
machine, although the differences were consistent over several trials.

LATERAL DISTRIBUTIONS

The lateral particle distributions show relative consistency between the two
packages. Similar profiles are seen when plotting position against time as well as
arrival time vs. core distance (see figures 1-4). The upturn at the core in figures 2
and 4 is likely due to later particles at the center of the shower increasing the mean
at that point. Reference [4], which simulates protons at energies up to 10’TeV, claims
that the observed lateral particle distributions fall off by 5 orders of magnitude
between the two models if one goes out to several km from the core. Any difference
is masked at the core because of the predominance of higher-energy interactions, but
becomes visible at the fringes where the lower energy particles show up. In the
context of Milagro, these differences are likely to be negligible at the distances
concerned.

As mentioned, all showers were thrown from zenith. An angle fitter was
run as a test to measure discrepancies in curvature and particle arrival-time
distributions, with inherent sampling corrections based on the GHEISHA package. The
fitter conducts six passes, presumably improving each time and the results (figures 5
and 6) are shown to be comparable for both FLUKA and GHEISHA.

Habronic aNpD Muonic SHOwER COMPONENTS

The most pronounced physical difference between FLLUKA and GHEISHA
is evident in the low energy hadronic and muonic shower components. References [3]
and [4] claim that SLAC has provided some patches for GHEISHA which improve its
kinematics and eliminate some of its early shortcomings. Some remain, however, and
these have a tendency to create an excess in elasticity and thus a “stretching of the
low-energy [hadronic| branches” 2 This manifests itself in the hadronic energy
distributions, especially for muons (shown below) and pions. My findings confirm the
differences reported in [5], particularly at the lowest energies (see figures 7-14 for
tests with both gamma and proton primaries) although the literature notes differences
of up to 15% below 30GeV. Thus for any applications where the low-energy muon
and hadron components are influential, the increased computation time required by
FLUKA is likely merited, as GHEISHA's kinematics are dubious for these energies.

Although unconfirmed here, the references also cite cases in which GHEISHA
has produced a sum of secondary particle energy and deposited energy that exceeds the
primary energy (by several percent in some cases). Again, users should be wary of this in
cases where the low-energy components are of great importance.

Conclusions

Unless computation time is extremely critical, it seems advisable to use
FLUKA over GHEISHA. These simple trials mirrored the trends suggested in the
references and seem to support the discrepancies at low energies due to GHEISHA's
kinematics. In the case where the primary particles are electromagnetic, the difference
in run time is negligible and thus GHEISHA presents no special advantage, nor is
there anything to be lost in running FLUKA. For hadronic showers, computation time
can be shortened by using GHEISHA, as long as particles below ~30GeV are of little
importance to the results.

2 Heck, [4], Pg. 4
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Figure 1: X vs. Time - Average Time for 5000 events with energies from 10GeV to 10TeV, from
zenith. GHEISHA is shown in red and FLUKA in blue. The two packages appear comparable.
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Figure 2: Arrival time vs. core distance for the same simulation, representing the mean in each X bin,
along with its RMS. The upturn at the core is thus an artifact of the large number of later particles
which pull the mean up.
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Figure 3: X vs. Time - Average Time for 30000 events with energies from 10GeV to 30TeV, from
zenith. GHEISHA is shown in red and FLUKA in blue.
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Figure 4: Arrival time vs. core distance for the same simulation, representing the mean in each X bin
and the associated RMS.
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Figure 5: Results of the angle fitter, run on the 5000 event (gamma) simulation from above. For each
of the six passes conducted, both models show comparable error from zenith.
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Figure 6: Results of the angle fitter, run on the 30000 event simulation
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from above. Again, both
models show comparable performance and the maximum error in the sixth pass is less than 1 degree.
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Figure 7: Hadron energies from the 30000 event simulation show that GHEISHA produces a relative
deficit of low-energy particles. Included here are p*, z*° K*, K%, K%, n, and p.
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Figure 8: Hadron energies from a low-energy, 10000 event simulation (10GeV<E<35GeV) show the
same deficit as above. The same particles are included here: x*, 7 *° K=*, K%, K%, n, and p.
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Figure 9: Plotting # *, alone, from the 30000 event simulation (10GeV<E<30TeV) to view the muonic
contribution to the low-energy deficit mentioned above.
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Figure 10: Plotting 2 *, alone, from the 10000 event simulation with lower energy gammas, as used in
figure 8 (10GeV<E<30GeV).
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Figure 11: Identical conditions to figure 7, but throwing protons instead of gammas. The same low-
energy particle deficit is visible. Note the differing number of entries in the legends. The same
particles are included here: p*, 7*° K=* K%, K% n, and p.
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Figure 12: Identical conditions to figure 8, for low energies, but throwing protons instead of gammas.
u* o*% K* K%, K% n, and pare included.
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Figure 13: Plotting 1 * with conditions identical to figure 9, but throwing protons instead of gammas.
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Figure 14: Identical conditions to figure 10, with lower energy protons instead of gammas. The same
deficiency of low-energy particles is visible.
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