Simple harmonic motion and wave motion

$\mathrm{T}=1 / f$	$\mathrm{v}=\lambda f$	$f_{n}=\frac{n v}{2 L}$	nodes at both ends
$\mathrm{T}_{\mathrm{sp}}=2 \pi \sqrt{\frac{m}{k}}$	$\mathrm{~T}_{\mathrm{p}}=2 \pi \sqrt{\frac{L}{g}}$	$f_{n}=\frac{n v}{4 L} \quad$ (n is odd) node at one end	$\mathrm{v}_{\text {sound }}=343 \mathrm{~m} / \mathrm{s}$
	$f_{\text {beat }}=\left\|f_{1}-f_{2}\right\|$	C note: 440 Hz D note: 524 Hz	E note: 688 Hz G note: 20 Hz
		G84 Hz	

Fluids and Thermodynamics

$3 / 2 k T=\left\langle 1 / 2 \mathrm{mv}^{2}\right\rangle$	$\mathrm{PV}=\mathrm{NkT}=\mathrm{nRT}$	$k=1.381 \times 10^{-23}$
$P=F / A$	$\mathbf{F}_{\text {buoy }}=-\left(\rho_{\text {water }} V_{\text {displaced }}\right) \mathbf{g}$	$\rho_{\text {air }}=1.29 \mathrm{~kg} / \mathrm{m}^{3}$
$\mathrm{P}=\mathrm{P}_{0}+\rho g h$	$\mathrm{Q}_{\text {in }}=\mathrm{W}+\Delta \mathrm{U}+\mathrm{Q}_{\text {out }}$	$\mathrm{R}=8.315 \mathrm{~J} / \mathrm{mol}-\mathrm{K}$
$\Delta \mathrm{P}+\Delta(\rho g h)+\Delta\left(1 / 2 \rho v^{2}\right)=0$	$\mathrm{W}=\mathrm{P} \Delta \mathrm{V}$	$\rho_{\text {water }}=1000 \mathrm{~kg} / \mathrm{m}^{3}$
$\Phi=\mathbf{A} \cdot \mathbf{v}$	$\mathrm{k}=1 / 2 \rho \mathrm{v}^{2} ; \mathrm{u}=\mathrm{\rho gh}$	$\mathrm{P}_{\text {AtMOSPh }}=101,00$
${ }^{\circ} \mathrm{C}={ }^{\circ} \mathrm{K}+273.15$	$\eta=W / Q_{\text {in }} ; \quad \eta_{\text {Carnot }}=1-$	$\mathrm{N}_{\text {avo }}=6.022 \times 10^{23}$

Properties of fundamental particles
$m_{\text {proton }}=1.6726 \times 10^{-27} \mathrm{~kg} \quad m_{\text {electron }}=9.109 \times 10^{-31} \mathrm{~kg} \quad m_{\text {neutron }}=1.6749 \times 10^{-27} \mathrm{~kg}$
$q_{\text {electron }}=-q_{\text {proton }}=-1.602 \times 10^{-19} \mathrm{C} \quad 1 \mathrm{amu}=1.6605 \times 10^{-27} \mathrm{~kg}=931.5 \mathrm{Mev} / \mathrm{c}^{2}$
$r_{\text {hydrogen atom }} \approx 0.529 \times 10^{-10} \mathrm{~m} \quad \Delta \mathrm{E}=\Delta \mathrm{mc}^{2}$

Radioactivity, Nuclear Physics, and Quantum Mechanics

$(\Delta x)(\Delta p) \approx h / 4 \pi$	$(\Delta E)(\Delta t) \approx h / 4 \pi$	$h=6.626 \times 10^{-34} \mathrm{~J} \cdot \mathrm{~s}$
$\lambda=\mathrm{h} / \mathrm{p}$	$\mathrm{E}_{\text {photon }}=\mathrm{hf}=\mathrm{pc}$	$\mathrm{A}_{\mathrm{A}} \mathrm{Z}=$ element Z with A nucleons
$\mathrm{N}=\mathrm{N}_{0}(1 / 2) \mathrm{t} / \mathrm{t}_{\mathrm{H}}$	$\mathrm{K}_{\text {max }}=\mathrm{qV}=\mathrm{hf}+\Phi$	${ }^{14} \mathrm{C}: \mathrm{t}_{\mathrm{H}}=5,730$ years (half life $=\mathrm{t}_{\mathrm{h}}$)
$1 \mathrm{ev} \rightarrow 1240 \mathrm{~nm}$		${ }^{239} \mathrm{Pu}: \mathrm{t}_{\mathrm{H}}=24,119$ years
(energy of a photon)		$\mathrm{E}_{\mathrm{o}}=-13.605 \mathrm{ev}$ (Hydrogen ground state)

Light

$\lambda_{\text {blue }} \approx 450 \mathrm{~nm}$	$\mathrm{n}_{\mathrm{i}} \sin \left(\theta_{\mathrm{i}}\right)=\mathrm{n}_{\mathrm{r}} \sin \left(\theta_{\mathrm{r}}\right)$	$\mathrm{n}_{\text {air }} \approx \mathrm{n}_{\text {vacuum }}=1.00$	primary: Red, Green, Blue
$\lambda_{\text {green }} \approx 500 \mathrm{~nm}$	$\mathrm{c}=2.998 \times 10^{8} \mathrm{~m} / \mathrm{s}$	$\mathrm{n}_{\text {water }}=1.33$	secondary: Magenta, Cyan, Yellow
$\lambda_{\text {red }} \approx 600 \mathrm{~nm}$	$m \lambda=\operatorname{dsin}(\theta)$	$\mathrm{n}=\mathrm{c} / \mathrm{v}_{\text {material }}$	$\frac{1}{f}=\frac{1}{d_{o}}+\frac{1}{d_{i}} \quad \mathrm{M}=\mathrm{h}_{\mathrm{i}} / \mathrm{h}_{\mathrm{o}}=\mathrm{d}_{\mathrm{i}} / \mathrm{d}_{\mathrm{o}}$

Electricity and magnetism

$\mathrm{F}_{\mathrm{E}}=k \mathrm{q}_{1} \mathrm{q}_{2} / \mathrm{r}^{2}$	$\mathbf{F}_{\mathrm{B}}=\mathbf{q} \mathbf{V} \times \mathbf{B}=\mathrm{qvBsin}(\theta)$	(direction: RHR)	$k=8.992 \times 10^{9} \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}^{2}$
$E=F_{E} / \mathrm{q}$	$\mathbf{B}_{\text {wire }}=\mu_{0} \mathrm{I} / 2 \pi r$	(direction: RHR)	$\mu_{\mathrm{o}}=4 \pi \times 10^{-7} \mathrm{~T} \cdot \mathrm{~m} / \mathrm{A}$
$\mathrm{E}=-\Delta \mathrm{V} / \Delta \mathrm{x}$	$\mathbf{F}_{\text {wire }}=\ell(\mathbf{I} \times \mathbf{B})=\ell \mathrm{IB} \sin (\theta)$	(direction: RHR)	$\Phi=B A \cos (\theta)$
$\mathrm{U}_{\text {el }}=\mathrm{q} \Delta \mathrm{V}$	for point charges only, $\mathrm{E}(\mathrm{r})$ ($k=1 / 4 \pi \varepsilon_{0}$ where $\varepsilon_{0}=8.8$	$\begin{aligned} & \left(q / r^{2} \text { and } V(r)=k q / r\right. \\ & \left.10^{-12} C^{2} / N \cdot m^{2}\right) \end{aligned}$	$\mathrm{V}=-\Delta \Phi / \Delta \mathrm{t}=\mathrm{Blv}$

Electric circuits

$\Delta V=I R$	$\mathrm{P}=\Delta \mathrm{E} / \Delta \mathrm{t}=\mathrm{I} \Delta \mathrm{V}=\mathrm{I}^{2} \mathrm{R}=\mathrm{V}^{2} / \mathrm{R}$	$\mathrm{Q}=\mathrm{C} \Delta \mathrm{V}$	
$\mathrm{I}=\Delta \mathrm{q} / \Delta \mathrm{t}=\Delta \mathrm{V} / \mathrm{R}$	$\mathrm{R}=\rho \mathrm{I} / \mathrm{A}$	$\mathrm{R}_{\text {series }}=\mathrm{R}_{1}+\mathrm{R}_{2}+\ldots$	
$\tau=\mathrm{RC}$	$\mathrm{V}=-\mathrm{L}(\Delta \mathrm{I} / \Delta \mathrm{t})$	$\mathrm{C}_{\text {parallel plate }}=\kappa \varepsilon \mathrm{A} / \mathrm{d}$	$1 / \mathrm{R}_{\text {parallel }}=\left(1 / \mathrm{R}_{1}\right)+\left(1 / \mathrm{R}_{2}\right)+\ldots$
		$\mathrm{C}_{\text {parallel }}=\mathrm{C}_{1}+\mathrm{C}_{2}+\ldots$	$1 / \mathrm{C}_{\text {series }}=\left(1 / \mathrm{C}_{1}\right)+\left(1 / \mathrm{C}_{2}\right)+\ldots$

Name	Symbols		Unit	Typical examples
Voltage Source	$\Delta \mathrm{V}$	-1	Volt (V)	9 V (cell phone charger); 12 V (car); 120 VAC (U.S. wall outlet)
Resistor	R	WW	Ohm (Ω)	$144 \Omega(100 \mathrm{~W}, 120 \mathrm{v}$ bulb); $1 \mathrm{k} \Omega$ (wet skin)
Capacitor	C	$-$	Farad (F)	RAM in a computer, 700 MF (Earth)
Inductor	L	-800	Henry (H)	7 H (guitar pickup)
Diode	by type	\rightarrow	none	light-emitting diode (LED); solar panel
Transistor	by type	$\xrightarrow{6}$	none	Computer processors

Vector quantities are shown in bold; some equations provide only scalar magnitudes.
The symbol ' \approx ' means 'approximately equal to'.
People's Physics Book 3e

Mathematics

If $\mathrm{ax}^{2}+\mathrm{bx}+\mathrm{c}=0$, then...

$$
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

$\%$ difference $=\mid($ measured - accepted $) /$ accepted $\mid \times 100 \%$
vector dot product: $\boldsymbol{a} \cdot \boldsymbol{b}=a b \cos \theta$ (product is a scalar)--- θ is angle between vectors vector cross product: $\boldsymbol{a} \mathbf{x} \mathbf{b}=a b \sin \theta$ (direction is given by $R H R$)
Kinematics under constant acceleration
$\Delta \mathrm{X}=\mathrm{X}_{\text {final }}-\mathrm{X}_{\text {initial }}$
Δ (anything $)=$ final value - initial value
$\mathbf{v}_{\mathrm{avg}}=\Delta \mathbf{x} / \Delta \mathrm{t}$
$\mathbf{a}_{\text {avg }}=\Delta \mathbf{v} / \Delta t$

$$
\begin{aligned}
& x(t)=x_{0}+v_{0} t+1 / 2 a_{x} t^{2} \\
& v(t)=v_{0}+a t \\
& v^{2}=v_{0}^{2}+2 a(\Delta x) \\
& \left(x=x_{0} \text { and } v=v_{0} \text { at } t=0\right)
\end{aligned}
$$

$\mathrm{g}=9.81 \mathrm{~m} / \mathrm{s}^{2} \approx 10 \mathrm{~m} / \mathrm{s}^{2}$
$1 \mathrm{~km}=1000 \mathrm{~m}$
1 meter $=3.28 \mathrm{ft}$
1 mile = 1.61 km

Newtonian physics and centripetal motion

$\mathbf{a}=\mathbf{F}_{\text {net }} / \mathrm{m} \quad \mathbf{F}_{\mathrm{g}}=\mathrm{mg}$	$\mathrm{f}_{\mathrm{k}}=\mu_{\mathrm{k}} \mathrm{F}_{\mathrm{N}}$	$\mathbf{F}_{\mathrm{sp}}=-\mathrm{k}(\Delta \mathbf{x})$	$\mathrm{G}=6.672 \times 10^{-11} \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{kg}^{2}$
	$\mathrm{f}_{\mathrm{s}} \leq \mu_{\mathrm{s}} \mathrm{F}_{\mathrm{N}}$	$\mathrm{F}_{\mathrm{G}}=\mathrm{Gm}_{1} \mathrm{~m}_{2} / \mathrm{r}^{2}$	$1 \mathrm{~kg}=1000 \mathrm{~g}=2.2 \mathrm{lbs}$
$\mathbf{F}_{\text {net }}=\sum \mathbf{F}_{\text {all individual forces }}=\mathrm{ma}$	$\mathrm{F}_{\mathrm{C}}=\mathrm{mv}^{2} / \mathrm{r}$		$1 \mathrm{~N}=1 \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s}^{2}$

Momentum and energy conservation

$\sum \mathbf{p}_{\text {initial }}=\sum \mathbf{p}_{\text {final }}$	$\mathrm{p}=\mathrm{mv}$	$\mathbf{F}_{\text {avg }}=\Delta p / \Delta t$		$1 \mathrm{~J}=1 \mathrm{~N} \cdot \mathrm{~m}$
				$1 \mathrm{~W}=1 \mathrm{~J} / \mathrm{s}$
$\mathrm{E}_{\text {initial }}=\mathrm{E}_{\text {final }}$	$K=1 / 2 m v^{2}$	$\mathrm{U}_{\mathrm{g}}=\mathrm{mgh}$	$\mathrm{W}=\mathrm{F} \cdot \Delta \mathbf{x}$	1 food Calorie $=4180 \mathrm{~J}$
$\mathrm{E}=\mathrm{K}+\mathrm{U}+\mathrm{W}$		$\mathrm{U}_{\text {sp }}=1 / 2 k(\Delta x)^{2}$	$\mathrm{P}=\Delta \mathrm{W} / \Delta \mathrm{t}$	$1 \mathrm{ev}=1.602 \times 10^{-19} \mathrm{~J}$
		$\mathrm{U}_{\mathrm{g}}=-\mathrm{Gm}_{1} \mathrm{~m}_{2} / \mathrm{r}$	$\mathrm{P}=\mathbf{F} . \mathbf{v}$	$1 \mathrm{kwh}=3.600 \times 10^{6} \mathrm{~J}$

Rotational motion

Vector quantities are shown in bold; some equations provide only scalar magnitudes.
The symbol ' \approx ' means 'approximately equal to'.

