T = 1 / f	٧÷	= λ <i>f</i>	$f_n = \frac{nv}{2L}$	nodes at both ends	v _{sound} = 343 m/s (in air at 20 C) A note: 440 Hz
$T_{sp} = 2\pi \sqrt{\frac{m}{k}}$ $T_p = 2\pi \sqrt{\frac{L}{g}}$		0	$f_n = \frac{nv}{4L}$ (n is odd) node at one end $f_{heat} = f_1 - f_2 $		C note: 524 Hz D note: 588 Hz E note: 660 Hz G note: 784 Hz
Fluids and	Thermodyn		J beat 1 J 1	521	G hole. 764 Hz
${}^{3}/{}_{2}kT = {}^{4}/{}_{2}mv^{2}{}_{avg}$ P = F / A $P = P_{0} + \rho gh$ $\Delta P + \Delta(\rho gh) + \Delta(\frac{1}{2} \rho v^{2}) = 0$ $\Phi = \mathbf{A} \cdot \mathbf{v}$ ${}^{\circ}C = {}^{\circ}K + 273.15$ <i>Properties of fundamental particles</i>			$ \begin{array}{ll} PV = NkT = nRT & k = 1.381 \times 10^{-23} \text{ J/K} \\ \mathbf{F}_{buoy} = - \left(\rho_{water}V_{displaced}\right) \mathbf{g} & \rho_{air} = 1.29 \text{ kg/m}^3 \\ \mathbf{Q}_{in} = W + \Delta U + Q_{out} & R = 8.315 \text{ J/mol-K} \\ W = P\DeltaV & \rho_{water} = 1000 \text{ kg/m}^3 \\ k = \frac{1}{2}\rhov^2; \ u = \rho gh & \rho_{ATMOSPH} = 101,000 \text{ N/M}^2 \\ \eta = W/Q_{in}; \eta_{Carnot} = 1 - (T_{low}/T_{high}) & N_{avo} = 6.022 \times 10^{23} \text{ mol}^{-1} \end{array} $		_{air} = 1.29 kg/m ³ = 8.315 J/mol-K _{water} = 1000 kg/m ³ _{ATMOSPH} = 101,000 N/M ²
$m_{\text{proton}} = 1.6726 \times 10^{-27} \text{ kg} \qquad m_{\text{electron}} = 9.109 \times 10^{-31} \text{ kg} \qquad m_{\text{neutron}} = 1.6749 \text{ x } 10^{-27} \text{ kg}$ $q_{\text{electron}} = -q_{\text{proton}} = -1.602 \times 10^{-19} \text{ C} \qquad 1 \text{ amu} = 1.6605 \text{ X } 10^{-27} \text{ kg} = 931.5 \text{ Mev/c}^2$ $r_{\text{hydrogen atom}} \approx 0.529 \times 10^{-10} \text{ m} \qquad \Delta E = \Delta \text{mc}^2$					
Radioactiv	vity, Nuclear	· Physics, and Qu	antum Mecha	nics	
			$\approx h/4\pi$ hf = pc V = hf + Φ		
$\lambda_{green}\approx 500~nm \qquad \qquad c=2$		c = 2.998 $m\lambda = dsin$	= n _r sin(θ _r) 3 ×10 ⁸ m/s n(θ)	$\begin{array}{l} n_{air} \approx n_{vacuum} = 1.00 \\ n_{water} = 1.33 \\ n = c/v_{material} \end{array}$	primary: Red, Green, Blue secondary: Magenta, Cyan, Yellow $\frac{1}{f} = \frac{1}{d_o} + \frac{1}{d_i} M = h_i/h_o = d_i/d_o$
$F_{E} = kq_{1}q_{2} / r^{2}$ $F_{B} = qv$ $E = F_{E} / q$ $B_{wire} = q$ $F_{wire} = q$ $U_{el} = q\Delta V$ for poin			×B = qvBsin(θ) (direction: RHR) $t_0 I / 2\pi r$ (direction: RHR) (I×B) = ℓIBsin(θ) (direction: RHR) c charges only, E(r) = kq / r^2 and V(r) = kq / r $τ_{ε_0}$ where $ε_0 = 8.854 \times 10^{-12} C^2/N \cdot m^2$)		$k = 8.992 \times 10^{9} \text{ N} \cdot \text{m}^{2}/\text{C}^{2}$ $\mu_{o} = 4\pi \times 10^{-7} \text{ T} \cdot \text{m}/\text{A}$ $\Phi = \text{BAcos}(\theta)$ $kq / r \qquad V = -\Delta \Phi / \Delta t = \text{Blv}$
$\begin{array}{ll} \Delta V = IR & P = \Delta E \ / \ \Delta t = I\Delta \\ I = \Delta q \ \Delta t = \Delta V \ / R & R = \rho \ / \\ \tau = RC & V = -L \end{array}$				$Q = C \Delta V$ $C_{\text{parallel plate}} = \kappa \epsilon A/d$ $C_{\text{parallel}} = C_1 + C_2 + .$	$\begin{aligned} R_{\text{series}} &= R_1 + R_2 + \dots \\ 1 \ / \ R_{\text{parallel}} &= (1/R_1) + (1/R_2) + \dots \\ 1 \ / \ C_{\text{series}} &= (1/C_1) + (1/C_2) + \dots \end{aligned}$
Name	S	ymbols	Unit	Typical examples	
Voltage Source	ΔV	— I—	Volt (V)	9 V (cell phone charger); 12 V (car); 120 VAC (U.S. wall outlet)	
Resistor	R	\sim	$Ohm\left(\Omega\right)$	144 Ω (100 W, 120v bulb); 1 k Ω (wet skin)	
Capacitor	С		Farad (F)	RAM in a computer, 700 MF (Earth)	
Inductor	L	-000-	Henry (H)	7 H (guitar pickup)	
Diode	by type	-▶	none	light-emitting diode (LED); solar panel	
Transistor	by type		none	Computer processors	

Vector quantities are shown in **bold**; some equations provide only scalar magnitudes. The symbol ' \approx ' means 'approximately equal to'.

$$\begin{aligned} & \text{Noether} \\ &$$

Vector quantities are shown in **bold**; some equations provide only scalar magnitudes. The symbol ' \approx ' means 'approximately equal to'.