Balloon Fest 2003

Emil y Chan
Sam Nyon
Ohm Srukhosit
March 29,2003

Purpose

- measure pressure, temperature, and acceleration at different altitudes
- analyze the data we have gathered
- ompare our data to NASA's models.

Procedure - The Launch

- Setup gondola with the labpro and 3 probes:
 - Accelerometer
 - Thermometer
 - Barometer
- Set labpro to take data every second for 3600 seconds (one hour)
- Blew up balloon on roof and tied gondola to bottom of balloon.
- Simultaneously started labpro and stopwatch
- Let it rise for 1000 feet into air with increments of 100 feet
 - Recorded height and took angle measurements for each height

NASA Empirical Model

$$P = P_0(1 - h/145442 \text{ ft})^{5.255876}$$

$$T = T_0 (1 - h / 44329 m)$$

Our Data

$$P = P_0(1 - h/145442 \text{ ft})^{6.77}$$

These are the projected values for the pressure and temperature data collected and the values that we received.

Calculation of Actual Height from the Roof

Calcula	<u>illoli ol Actual</u>	Height hom t	HE KOOI
Feet of Rope	Angle of Rope*	—>	Height from the Roof
0 ft	O°	0sin87°	0 ft
100 ft	3°	100sin87°	99.86 ft
200 ft	3°	200sin87°	199.73 ft
300 ft	3°	300sin87°	299.58 ft
400 ft	3°	400sin87°	399.45 ft
500 ft	5°	500sin85°	498.09 ft
600 ft	5°	600sin85°	597.72 ft
700 ft	7°	700sin83°	694.78 ft
800 ft	8°	800sin82°	792.21 ft
900 ft	8°	900sin82°	891.24 ft
1000 ft	10°	1000sin80°	984.81 ft

^{*} We lost our data, so we do not know the exact angle for each hundred-foot mark. However, we do know that the angle remained consistent until four hundred feet and increased up to 10° at one thousand feet. We are certain that the angle never exceeded 10°.

Height of the Roof from Sea Level (Surface of the Earth)

Using the P = $P_oe^{(-h/27600)}$ we found the height of the roof to be 277.389 ft or 84.544 m

Using the P = $P_o(1 - h/145442 \text{ ft})^{5.255876} \text{ we}$ found the height of the roof to be 277.849 ft or 84.684 m

These heights are relatively similar in physics terms!!

Height vs. Pressure

	Data Set		Data Set		
	Height	Pressure			
	(f+)	(atm)			
1	0	0.990	▣		
2	100	0.986			
3	200	0.981			
4	300	0.976			
5	400	0.971			
6	500	0.967			
7	600	0.962			
8	700	0.958			
9	800	0.954			
10	900	0.950			
11	1000	0.946	П		
12	4	•	<u> </u>		

Height vs. Pressure (Fixed Heights)

	Data Set		
	Height	Pressure	
	(f+)	(atm)	
1	0.00	0.990	•
2	99.86	0.986	
3	199.73	0.981	
4	299.58	0.976	
5	399.45	0.971	
6	498.09	0.967	
7	597.72	0.962	
8	694.78	0.958	
9	792.21	0.954	
10	891.24	0.950	
11	984.81	0.946	▾
12	4	h	Γ

Height vs. Pressure (NASA Model)

	Data Set		
	Height Pressure		
	(ft)	(atm)	
1	0.00	0.990	
2	99.86	0.986	
3	199.73	0.981	
4	299.58	0.976	
5	399.45	0.971	
6	498.09	0.967	
7	597.72	0.962	
8	694.78	0.958	
9	792.21	0.954	
10	891.24	0.950	
11	984.81	0.946	▾
12	4	•	Γ

Height vs. Temperature

	Data Set		
	Height Temp		
	(f+)	(C)	
1	0	16.667	Δ
2	100	15.566	
3	200	15.592	
4	300	13.639	
5	400	13.916	
6	500	14.453	
7	600	14.903	
8	700	13.877	
9	800	12.253	
10	900	12.064	
11	1000	12.329	¥
12	4	•	ľ

Height vs. Temperature (Fixed heights)

	Data Set		
	Height	Height Temp	
	(ft)	(C)	
1	0.00	16.667	Δ
2	99.86	15.566	
3	199.73	15.592	
4	299.58	13.639	
5	399.45	13.916	
6	498.09	14.453	
7	597.72	14.903	
8	694.78	13.877	
9	792.21	12,253	
10	891.24	12.064	
11	984.81	12.329	
12	4	F	Ī

Height vs. Temperature (NASA model)

	Data Set		
	Height Temp		
	(ft)	(C)	ļ
1	0.00	16.667	±
2	99.86	15.566	
3	199.73	15.592	
4	299.58	13.639	
5	399.45	13.916	
6	498.09	14.453	
7	597.72	14.903	
8	694.78	13.877	
9	792.21	12.253	
10	891.24	12.064	
11	984.81	12.329	¥
12	ৰ	Þ	ľ

Height vs. Acceleration

	Date	a Set	
	Height	Acc.	
	(f+)	(m/s^2)	
1	0	-9.951	٨
2	100	-9.774	
3	200	-9.734	
4	300	-9.652	
5	400	-9.693	
6	500	-9.654	
7	600	-9.588	
8	700	-9.577	
9	800	-9.631	
10	900	-9.577	
11	1000	-9.597	¥
12	4	Þ	Ī
			_

Height vs. Acceleration (Fixed heights)

	Data Set		
	Height Acc.		
	(f+)	(m/s^2)	
1	0.00	-9.951	±
2	99.86	-9.774	
3	199.73	-9.734	
4	299.58	-9.652	
5	399.45	-9.693	
6	498.09	-9.654	
7	597.72	-9.588	
8	694.78	-9.577	
9	792.21	-9.631	
10	891.24	-9.577	
11	984.81	-9.597	V
12	4	 	Г

Theoretical Acceleration Values

 $a = -Gm_e/r^2 = -(6.67x10^{-11})(5.97x10^{24})/(6.38x10^6+84.544+h)^2$

hoight (ft)	hoight (m)	theoretical	recorded
neight (it)	height (m)	acc. (m/s ²)	acc. (m/s ²)
0.00	0.00	-9.7824	-9.951
99.86	30.43	-9.7823	-9.774
199.73	60.87	-9.7823	-9.734
299.58	91.30	-9.7822	-9.652
399.45	121.74	-9.7821	-9.693
498.09	151.81	-9.7820	-9.654
597.72	182.17	-9.7819	-9.588
694.78	211.75	-9.7818	-9.577
792.21	241.45	-9.7817	-9.631
891.24	271.63	-9.7816	-9.577
984.81	300.15	-9.7815	-9.597

Error Analysis

- The angles/heights were not exact due to curvature of the string
- We calculated only the theoretical height of the roof, not the real height
- Spikes in temperature due to clouds and sunset
- The accelerometer was not always facing straight up and down
- We....lost our angles

Results/Conclusions

- We have the BESSSSSTEST data
- We have proven with all of these:
 - Pressure decreases exponentially as height increases
 - Temperature decreases linearly as height increases, with variations due to weather
 - Acceleration does decrease with distance from the center of the earth, but not as much as our data shows

