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." ~n iterative relaxation technique is presented for unfolding three- are presented. This type of analysis has applications in radio-I
he ," Jimensional distributions from a series of two-dimensional graphy, electron transmission microscopy, radiotherapy, and ,I

projections taken at several different orientations relative to the nuclear medicine. Features of the technique which may make it !
IJbject being investigated. The achievable resolution is discussed. especially suitable for particular applications are described.
~nalyses of both computer simulations and actual measurements

---'

u d .i 1.lntro uction tional problem. We offer here a new method of
1 A series of X-ray pictures taken at a number of analyzing the problem, using an iterative relaxation
, different view angles may contain enough information technique. A discussion of the relative merits of this
- to enable one to reconstruct the full three-dimensional and the other available mathematical modelsl-3)

distribution of absorption coefficients in the viewed is deferred until after the description of the method. ;1
object. Similar Iy, a series of scans involving translations It is self-evident that the three-dimensional problem

f and rotations of a pair of gamma detectors may be can be broken up into a series of two-dimensional
1 used to map out the distribution of a positron-emitting problems by considering separately a series of "slices"

isotope through a transverse section of a patient. through the scanned object. We make this simplifi-
On a quite different scale, transmission electron cation in all the computational examples presented

x micrographs taken at a series of tilt angles may be here and in our treatment of resolution. However,
d used to reconstruct the three-dimensional underlying nothing in the mathematics of the analysis implies

$tructure. Finally, measurement of the average energy such a limitation.
~ loss of a high-energy heavy-particle beam passing The basic series of measurements is illustrated
~ through a patient leads to knowledge of the projected schematically in fig. 1. It consists of a series of scans

stopping power along the beam line. A series of such taken at a number of different angles relative to the
measurements at different transverse positions and object to be examined. Each scan comprises a series

. Nucl. Instt patient orientations can be used to reconstruct the of measurements of the projected density along a

distribution of stopping power throughout a transverse . .'Ite structidl I section, and this information can be directly used to . This work was. d.one under the auspices of the U.S. Atomic
Ita Re ','.,.. Energy Commission.

g. ~ guIde Bragg-peak radiotherapy. t Presenl address: Dept. of Radiation Medicine, Massachusetts

k h Zh.' ,;. These diverse situations present the same computa- General Hospital, Boston, Mass., U.S.A.
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Fig. I. Basic series of measurements comprising a series of projections along parallel transversely separated paths, each series being
made at a number of different orientations. Each arrowed line represents Ihe path along which one measurement is made.

509



--
,0 \

510 M. GOITEIN

Y there are mx transversely displaced measurements at
. each of m. orientations, and then m = m. x mx. The. value of each measurement is Xj U=I,..., m) and the

associated measurement error (standard deviation)
is (1 j. We denote the theoretical value that the mea- ese e4

. surement should have (on the basis of some assumed sion 1
I density distribution) as X j (x j is the result of measure- exact
; ment with attendant errors). It is assumed to be related nique SP(

ny x to the densities through the linear relationship ()n. The tl
! N uations i
, Xj = L fjkPk' U=I,...,M). (1) or most

k = I ssi ble dc,
This linear relationship may not, of course, hold even thc

for the primary measurements made. In that case the, o?ject
X j are to be interpreted as secondary quantities derived ye~slon 0

I- n. ce 5 -, from the measurements. For example, in a counting ulre mc

Fig. 2. Reanalysis grid with one typical measurement schemati- detector used in gamma-ray transmission measure- re?ver,
i cally indicated. ments the X j would represent the logarithm of the ndllng n
" count rate (normalized to the rate without absorber). embere

number. of discrete t~an~versely separa~ed strips. Of A typical measurement swathe is depicted schemati- third p
course, In some applications, the scan IS almost con- cally in fig. 2. For a swathe of square profile one has: er of t
tinuous. In such a case we assume the information t.
is "binned" into a number of discrete measurements. ~k = (A!K')gjk'

In the technique to be described there is nothing, .. rative
which requires the scan to be taken at regular intervals where A IS the. area of ~ cell, K' IS the wl~th of the e solul
of either angle or position. Indeed, there is no require- swathe ~nd gjk IS the fraction of t~e ~th cell Intersected tional
ment that the scan-lines be parallel with one another by the jth measurement. In the limit that the swath?- Iv
or even that the measured projections be alon~ is narrower than the cell width the fjk reduce to the n ~: a~
straight lines. However, for descriptive convenience, average path length wit~in the kth cell of the fth C~I~r~1
we will discuss the problem as though these conditions measurement. ~or non-~ru~orm pro~les, the gjk a~e, to .. h invol
hold be evaluated with a weighting function characterlslng .

f. fi

l . f 'II Ion 0First, we must establish some notation. We divide the swathe pro e. Many, Indeed most, 0 thefjk \\'1 I,...,M
the space upon which measurements are to be made be zero for reasonably narrow beams. ity of t

into a region within which are N cells of unknown 2 Exact solution uremerdensity, and outside of that region the density is .
W h h I. bl .

k assume(

. e t us ave a Inear pro em In N un no\\ns

assumed to be known exactly. That beIng the case, the ( h N ) P .d d h b f d f fi d of the. . f ,. t e p'. rovi e t e num ero egrees 0 ree om
contributIon rom the known density region can always M N I I . . h b I ' of a

( co- - m + ) IS non-negative t ere can e a so utlon,
be calculated and subtracted from the measurement' f -h I . I ., h r h. h ay rew.., . . e east-squares so utlon IS t at lor w IC
a situation equivalent to having a density of zero
outside the region of unknown density. This is assumed M (X )2 f " p.2 ""' ,- x' )1 Ito be the case in all that follows. 1 = L.. I 2 I (

Within each cell the density is assumed to be uniform. 1= 1 (1j .
This assumption could be modified, as is discussed later. is a minimum. It is trivial to show that this condition s gives M
The density of the ith cell is denoted PI. We consider is met by the solution of the N simultaneous linear; e many)
the N cells as being partitioned in a Cartesian grid equations in N unknowns: thing to s
with n., x ny divisions as depicted in fig. 2. This particu- than M
lar grid is chosen only for simplicity. Other, more N e find t
complicated cell patterns can easily be accommodated. L aklPk = bj, (t= 1, ..., N), iring th~

k=1
By a "measurement" we mean the result of measuring where

the line integral (projection) of density along a single M 1 .K"
path. A total of m such measurements comprises a akl = L 2 fjJj;,

complete scan. In most examples considered here j= 1 (1 j will OCI
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I involves only trivial algebra, is then:

11J.t'

, M 1x'

an
~ bi = .~ 2 X Jji. M ( N ..) ~ ,

via..,.' )-lO"j L (f'i/O",)(l 0",) ,\",- L JikPk :

..+1 .. 1=1 k=le ~ The~e equati~ns can be solved by stan?ard mat:ix Api = Pi - Pi = " 2' (3)
l1'i~ lSSU" inversion techniques. We term the resulting solution L f 11/0"; : ;:j

measure [he "exact solution", meaning that it is the result of a 1= 1 : i:"
)e relat~ j unique specification with a well-defined unique solu- wher.e p?+ 1 is the adjusted cell density and P.. is the

!lion. The trouble is, of course, that the solution of these density assumed at the start of the nth iteration.

, equations involves the inversion of an N x N matrix.
For most interesting subdivisions this imposes im- 3.1. DAMPING~ possible demands on both cole and time availability One might assume that one could calculate the N

; in even the largest computers. For example, dividing adjustments (Ap;;i=l,...,N) and apply them to Ii.
~ the object into a modest 15 x 15 grid would entail all cells without further manipulation. This procedure, !j

inversion of a 225 x 225 matrix. This array alone would however, is seriously deficient in that it leads to a i,J
require more than 50000 words of core for storage. rapidly diverging solution which blows up after only ~;

1 Moreover, even though techniques are available for a few iterations. The reason for this behavior is easy Ihandling matrices which overflow core, it must be to see. Consider the situation in which, on average, the '

remembered that execution time goes up with roughly cells have too Iowa density at the start of an iteration.
the third power of the matrix, hence, with the sixth As each cell is examined there will be a tendency to '"

.: power of the number of cells along the edge of the increase its density, over and above the particular ~

object. adjustment required to improve the local density ,
variations. This increase is made assuming all other f'

3. Iterative relaxation technique cells have the value assigned at the start of the itera- j
'. The solution we have developed to meet the com- tion and does not take into account the fact that they I;
. putational inaccessibility of an "exact solution" will be increased to account for the overall low density. 11
. involves an iterative procedure. At the start of any Thus when all cells are adjusted there will be a tendency
- given iteration one has a density value assigned to to overcompensate for the overall density deficit. This

each cell. Consider the ith cell and all those projections problem will clearly lead to increasingly large over- -.
, which involve a contribution from it, that is, the small shoots with successive iterations. 'jt fraction of all the measurements for which fji#O The solution which we have adopted to meet this .,

(j= 1,..., M). The heart of the technique is to adjust the problem is to introduce an overall multiplicative
density of the ith cell in such a way as best to fit all damping factor, c>. We then compute the densities
measurements which involve that cell. All other cells used as input to the (n + 1 )th itelation (p? + 1) according !,

1 k . are assumed to have the fixed values assigned at the to the formula
r start of the iteration. The "best fit" is judged on the '!+ 1 = '! b" , (4) "

r b '
f 1 PI PI+ap"

11asls 0 a east-squares mlmmlzatlon. Specifically,
0 ;,~, ~t: may rewrite eq. (I): where APi. is the q~~ntity expressed in eq. (~). .. ~

;~; One might enViSion many ways of achIeving this ,,':

,., f " p , = X. - ~ f ,

P (J. = I M) damping effect. We have chosen b by the requirement {,

)" ) L. )k k, , ..., .(2) k= 1 that the overall solution (involving all cells) be such
k". , that the measurements are best matched by the new

;ondition This gives M equations in one unknown (Pi), although, densities in the least-squares sense. This is the re-
us linear since manyfji will be zero .(many measurements have quirement that

f, nothing to s~y about a specific cell), there will be far M (X ,- .)2
less than M Interesting equations. .112 = L ) .\") is a minimum,

We find the solution in the least-squares sense by j= 1 (J~

, requiring that which occurs for d._112/db = O. The X j are, of course,
M (X )2 functions of c> through eqs. (1), (3), and (4). They may

u2 ~ I-X, b . . b dv« = L" e a minimum. e expresse as
1=1 0"2 M

This will occur for dvIl2/dp .=0 The solution whl.ch Xj = L fjk(P~+bApk).
I ., k=l
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The solution involves a little algebra and may be

conveniently expressed:
M

L (cjfa})(xj-X)
<5-j=1- M'

L (cJfa~)
j=1

where
N N

C j = L !jkApk' X j = L fjkP~, (5)
k=1 k=1

This then completes the solution for one iteration.
To summarize, one computes Api (i=I,..., N) using
eq. (3), where the pZ are the values assumed at the start ,C:;,'j,. .,- .'-"". "'.
of the iteration. One then determines a damping ,~~:,~'::"'::. ,,:i.:,;;.::.:' ,:"ri.':!b'

.'c ". " ,,' . .factor, <5, from eq. (5), where the pZ are again the ~~.:. . ".: :,: .. :.:;. ':'~~

densities at the start of the iteration and the APk are the ,~!'.',;,:: o'~)'.'::'.' ..,~!:-:'" - :- :"~'
just-calculated adjustments. Finally, one adjusts all ',- 0 -:;;0'1," 0' 0; ,

-"I. , .densities according to eq. (4). -,- : :,~'...:~. "
We postpone discussion of the convergence of the ,,'. -: 0'" , ,. . ,0:, '

iterations and briefly address the question of starting ~j; , "::.0" .
I 0';,' va ues. ",;. ' "

'-,~,," .

,°.;__;, :00

3.2. STARTING VALUES (d) ERROR

One needs a starting value for the initial iteration. Fig. 3. Computer simulation of Cormack's experiment:!). (a)
We have tried two approaches. The first was to obtain Original phantom; (b) computer simulation of phantom, density
the "exact solution" described above for a grid is linearly proportional to the dot density; (c) computer reco~'

. ' '. struction of phantom; (d) difference between reconstructed and
sufficIently coarse that the problem was tractable In true densities. Horizontal slashes are deficits and vertical slashes
the computer. The resulting densities were then pro- are density excesses.
jected onto the finer grid used for iterations and these are I
values were used as starting values. The second to the originating density distribution. Random errors whict
approach was to assume a uniform density throughout are introduced into the measurements and effects to an)
of some "reasonable" value. of beam width are taken into account. In every instance I of th

Both methods were acceptable, leading to solutions so far considered the computation has converged onto e furl
which converge quite rapidly. There seemed no reason the "correct" solution. That is not to say that there e corn
to prefer the former, more elaborate method and we are not minor artifacts, but in no case has any sub- Since
do not recommend it. It is slightly advantageous stantial feature been observed in the analysis which e to
to select the uniform density value to give the correct was not present in the generating object, nor have rced t
value for the average sum of a set of measurements ~gnificant features been missed in reconstruction. 0 this
at one angle of view (i.e., to have the right "weight"). By way of illustration we show in fig. 3 one example pJore

suggested by the paper of Corrnack2). Fig. 3(a) showS check
4. Results a cross section of the phantom used in ref. 2, and in empi

The relaxation technique has been explored in two fig. 3(b) we show the computer simulation of the ing sai
ways, First on computer-simulated measurements phantom. "Measurements" were then made with a cerning
performed under a variety of conditions. Second, on a scan of 51 transver~ely separated lines of view at ciple th
number of actual measurements made on phantom 40 uniformly spaced angles. A random error (standard n small
objects. deviation) of slightly less than I ~~ was introduced intO speci,

all measurements. They were then analyzed on a 30 )( 30 know!
4.1. COMPUTER SIMULATION grid and the results (after the fifteenth iteration) are re a cel

We have examined a number of different "objects" displayed in fig. 3(c). In these plots the density is iterati<

upon which measurements have been simulated b)' proportional to the density of displayed dots. 0 tive d(
computer and then analyzed without further reference In fig. 3(d) we take advantage of our knowledge 01 in pro
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PHANTOM WALLS ment tends to "clean up" the corner!: (and other areas
IlUCITE. DENSITY = 10 glom') .

) h f . . h .

'-'"~.o:::~;.' of near-zero density at t e expense 0 IOSlg t Into

o'-;r t;'.'~..." art I."acts!,:--"i.~,,"~'!"""~ (,.
+"'";'0 ;.t'Iwti' 1MAIN ;~~.~,;;~-.";~ -

OF PHA ~.,:~.", ~ ::1:' o. :'
WATER, :v!2.l:, :.:;:!~~. 4.2. MEASUREMENTS[ ~..~ ,.- . ~'r!:. .
~~NgSJ:: ,g{~~~~~~. No original measurements have been made by this

LUNGS ~~~~"~

I'~~~;':';":"~" author. However, the generosity of others in making . IR. DENSITY ""'..." ...~-

, 00 glom'! ~f~~: :it~~:: their. measurements available for analysis has been
SPIN o E ~'!;l :f:~f.~~",~~ considerable. Three such sets of data have been

(TEfl N, ~;;;'!"'~ ",,",t i C)£"' '

~~NgS;: ~;lt~~~~' ".t~j:..-r;: scanned and, si?ce they. all exhib!t rather different

~:.~ ;::~.~-~. features, they will be briefly described. One feature

PHANTOM . ~; ~:i:;'~:i~i:~~'~~;~ common to all the measurements analyzed is the
- .V . .~~'"' ,.. ~,.- ~~., . f h Th.

I::; ~j~~~;";~',,",~'" comparative coarseness 0 t e scans. IS evo ves

.;.~~~."~~ naturally from the extreme tedium of making the large

(a) (b) _,-Dumber of precise measurements necessary for good

Fig. 4. Lyman experiment using 840 MeV alpha particles (ref. 4). resolution. It is quite evident that automated data

;c. (a) Schematic representation of phantom; (b) reconstruction. accumulation is required to realise good resolution.

The first set of data4) were taken on the phantom
the initiating density distribution to display the schematically represented in fig. 4(a). This object was
difference between the analysis and the true answer. placed in an 840 MeV alpha beam at the 184 inch
In this display a horizontal ~Iash represents a den~ity Lawrence Berkeley Laboratory cyclotron, and measure-
deficit and a vertical slash a density surfeit. The density ments of the transmitted beam energy were made as
of slashes is plotted to the same absolute scale as the the phantom was both translated and rotated in the
dot density in figs. 3(b) and 3(c). From this represen- beam line. The projected stopping power along the
tation one feature of the unfolding process is very beam line was computed from the average energy
clear, namely, that there is a strong tendency to be in degradation. The data were then analyzed to retrieve
error equally above and below the true values and this the local stopping power through a cross section of
type of "oscillation" about the true value occurs mainly the phantom. Fig. 4(b) shows the re~ult of that analysis.
where sharp density variations occur. Very sharp The scan involved 41 trarrslatiorrs and 19 different view
edges are not resolvable and introduce these oscilla- angles. The oblong analysis grid was divided into
tions which, nevertheless, tend to give a null contribu- 12 x 24 cells. The coarseness of the scan leads to
tion to any calculation of a line integral through part limitations on the spatial resolution which should

,r i or all of the object. be of the order of one-half the size of the central
rged on One further feature merits attention. The density "spine". Such details as a slight asymmetry of the
that there in the corners (as elsewhere) is the result of computa- outer phantom wall and the fact that one "lung" was
any sub\'ii 'tion. Since one has a circular object and a square closer to the side of the phantom than was the other are
sis whi4 outline to the grid these regions might reasonably faithfully reproduced in this reconstruction.
nor h~' be forced to their known (near-zero) density. We do The second set of datas) were X-ray transmission

lstruction; not do this, however, because we feel it is quite useful
le example 10 explore regions, such as corners, of known density I

3(a) sho,:"s 'as a check .o.n the success of the analysis and to. offer I ..:, ;~i;\+$~~f);:i
.2, and ~ som~ emP.lrlcal. measure of the scale. o.f artifacts. I .~~~_:"4-
on of the Having ~ald this we must add a qualifYing remark I i'~~. .~~.
de with ~ concerning our treatment of negative densities. In I :~;~ ~~:.
,r view at principle the.se need caus~ no alarm. They have alw~ys I q~~ f . ~{
. (standard been small In our experience. However, we do give t '~i':: .,iJ~ '.~:-.:;

duced into Ih~m special treatment since they are u~physical and I "~:'...t;it~~~~~'

n a 30 x~ this knowledge may reasonably be Incorporated. I.~, ~~~:.:
°ation) ~ Where a cell is assigned a negative density at the end of I ,C',.o.,--,"

density: . any iteration we reset it to zero and reas~ign the (a) PHANTOM (b) RECONSTRUCTION

s. ~ negative density to all neighboring positive density Fig. 5. Chesler experiment (ref. 5). (a) Phantom; (b) reconstruc-

)wledgc;. cells in proportion to their density values. This treat- tion.

i.
.,;;;,:,
'T,.
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view of the non-uniform measurement grid, This pOI
explains why the resolution towards the edge is inferior in

"...~,:.,~.,;, ,'_, . to that achieved in ref. 2. ge
.:. ."~.'.. :..,~ -,.,r: \"~""..'...

..' ~ J.,..'I.".'..'. .
...,';.:,-;: ,.,~.:", ';o\~.:"',.i.~...: hlg. . . .. - "'."~i,.,;'..' .~.:..~~.',..~~. .

40"~~"- ~.. .-;,. '.. /:..",.~ '~~:.-tt':.,.1- .. 5. Convergence US!. . '.f~: 4"I,:~.~~,;.,\.;'_.:..~-::""':-~.~.~~."~'" .~. . . .
... ,.i.~.~:~:t;~,";:'.'~:',:,.:~~~'i':- !~:.;.,;\.-, ~!:):'r-':.".~~.~~ . There are three questions which one might ask ml

. . ..1.:'\(~. ~ ' "~..'" "'.~.VL~j.. .yt""'" , h . . D h . .~ ' ::. :~.,:}.::.!:lr:.'~.:. t:... -;:~ io:'.~~: ..~. ~7;. :.~:.~1:. ,"'~', ~(".~:.'. concerning t e Iterations. 0 t e Iterations converge? (s
~ "r,..'" .,~' .. .J ,~.., -"'~'~ -:~"-:'o-.,.)/", ".tI . .,. '. """"'\"' ~""-'~'.:""~I;"~'~:'~,~ '.',,~.~.~ 1.,-:,. '."~'v.;: ,)'/':of'):.:",.' Do they converge to a unique (and correct) solution? e

,7,:;.; ,~.;}...", ':"yo.;"'~:;"'" -.~.r.",.;..""J;:'.. ..,:~s .. ,
..~.°:1"'~.l,,, .":"':':"':"::~J'":~. '."~~'.~-;.:-;:.:':";;':..~~-:~~.I.~",,:,..o?:-r-!~'.. And, finally, do they give a reconstruction which or
. '~"'..~!-'.".~,{.A':-'J~,, ,,"..,..~.. .,"";'0) .. ..'\' ~. . .
:.-r-I!.::'.~.:i. "~~,, # ::: .:---: ""' ~.,r'.~;.;"'J'.::}:\.~.\I..~1.~:I;'O:-; .t.t : PredIcts reasonable values for the observations? nr(

.".".,..,~...{...,.r,...,..-,.."""". ~,,,..c.'. . .'.'.".'.'.~'~"\.."""" '. \.'" .
':":,-~\r(~~.~~',.~/.~~:, .': :,,~.~.~ ,.,~, .;~~~. :~:.~,.. Tn fig. 7 we plot the sum of squares [as defined In lly
"~" ,,...~...~.,...,~..wJ';",;("'s-~' '.J'~.. ... .
;'-J'.~~..~)'~.' ,~.:: ,..:; ~ry::.:~~: ~'~;1i~ . l).,~ eq. (2)] against the Iteration number for the analysIs er
'.. ._~. ~. !.:-.. -"-rc, ,~t'.oit) "---~ . 2 ..~1.~.::.".:~'~".~,A. ~ .~;~-:'~~~).~~ .~,,~~.: ,' ' !;~,:: of Cormack s data ). the results of which were presented fo
C-""'.~'-' ~~ .iI"",,' ~ .,~ ' 6 I h b d . h. h:.;;"~.':..~ '::;,'~'",'~~~-I;'~~.:,~.\.'-:::.t~:;:;~ ~ . " ..:..:.":~~. In fig. ,Noexampe as eenencountere InWIC ar<

. "'1 '>'.'~J""'",.#,;""'~" "...~ .~ ~ 'R ~ . ~... .. h r.;t':~. .""'~i,,;;'~':'t"" " ':""":~ c~o_':~':"':~:,. ~.,~~ . :~:~:L': such convergence did not obtain. We ave no Proo"
,-., . "'T' 'T" 'J..'" .? '.'" .-,., :..~ .

".,.,t.,.,~' J..",.,'.':"".'.T... . ,:: ,~"",,"., .""'~;::"i ~,.:..'.i-t":."~.o.;~\::.::!.~-:.:, ::,;;"",!,,: .~:.~.:. however, that such convergence will necessaTily occur f l
. "~::::~:.:"i-~k"'"t°';"i:-\t~"i,~~;,~;':';~:~'i,:!~~}:{~:{.,;:.!;:.' and can only state that, in our experience, it always has, do

,! , :-..;'t~ """"""<.L"'~"'. ..'. ~.:.'(

..~;,~~~~;:~~;::~.::'.,:-:,'\;.:..~";~,-,.,,~"'.7~'.~'~"';:'.:~i':"~ Similarly, in regard to the uniqueness of the situa- ter
:'~.":'.I..~,...,-:~,")..~ :..;.;..~: "~:';rY~ ~'.' . .

'.' :,;~~o:.:<~~.~...:\i'l.:';,.",:,\-,;-~,-.?::}","""";"':'"'.');::~':"t.>... tlon, we have been unable to Prove a uniqueness t. .:<. ::"0',' ...!.ro\",' ° -",."".0") ' :,' .
:. .::~ : ;~:..\~..'oc.';:...~'~.~::r_:,'.~::..:i~.:~~~o;.:.'. theorem. One might worry, as some havel'1, that ~ec- ~~.t:.~ ~- .~~ ~ .~.~ :.~ i.'I~'~f-~l :~'-? '-~" ~ -",~",,("""-"":"'.' .

ambiguous solutions may exist. In some cases, notable ns" .'." 0'" '=.~~:' '--I -.. "... . ';":~ v~: ::,'~~~.-!"::-':' . when a very limited number of measurements are 0

made, there are certainly very real ambiguities inherent e I

Fig. 6. Reconstruction of phantom shown in fig. 3a based on . h Th . . th .th th mple 1...
analysis of lhe original Connack dala (ref. 2). In t e measurements. IS IS e case WI e exa ~

presented in ref. 3. One must realize that in such cases tio
the ambiguity is real and any method of analysis must rid

data taken on a spherically symmetric annulus depicted of
in fig, 5(a). Since the phantom had thi8 symmetry, only v~
one view angle was adopted and 15 measurements 8 n.
were made in equal steps from the center to just y
beyond the outside edge. To simulate a full scan the ~ 3000 da
same data were repeated as though taken at 30 dif- g eC4

w
ferent angles and these were analyzed on an 18 x 18 ~ res
grid, The results are presented in fig. 5(b). This way::: an
of analyzing the data was adopted for convenience 0 ce

w
and is clearly not the optimum approach. ~ Ie;

The third set of data were those reported in ref. 2 ~ 2000

on the phantom which is depicted in fig. 3(a). The . ~ loti
probe was a collimated gamma-ray beam. Transmission - ~ 8 CHOIC

was measured at 25 view angles and along 19 trans- ~ \ nside
versely spaced lines. The transverse lines were not '< \ e max

uniformly spaced, however. They were more closely 5 usefuj
spaced towards the edge of the phantom, This feature ~ 1000 . hare
is related to the reconstruction technique presented in 0 8,. ost the
ref, 2, but we mention it here to illustrate the flexibility ~ " ,. lengt
of our approach, which in no way depends on the way '" ~"' 8-.-8 erent if

in which measurements are made (although, of course, might
one must know the paths along which measurements 0 is nec
are made and the reconstruction accuracy will depend 0 10 20 ation.
on the sampling used). We show, in fig, 6, the result ITERA TION NUMBER angle
of the reconstruction. It was made on a rectangular Fig. 7. Convergence for lhe Connack experiment, The sum of e ma~
grid of uniform spacing - not the most appropriate in squares per degree of freedom is plotted againsl ileration number. timatc
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grid. be responsive to that problem which is a consequence
is inti of the inadequacy of the measurements. The ability to

converge on the correct solution is directly related
to the high degree of redundancy in the measurements.
One must make substantially more measurements than

might as the number of pieces of information one hopes to
., converge? extract (see below). If that is done, it is our experience
:t) solution? that the iterative relaxation technique does converge !
'ion which to the correct solution even when substantially different
ervations? ' (and unreasonable) starting values are used.

defined in Finally, one must note that the convergence may be
Ie analysis to rather poor values of the least-squares parameter.
present.'~ Fig. 7, for example, shows a convergence of the sum MINIMU
in whic of squares to a value of about 200 per degree of INCLUDE
no proD' freedom, which is quite enormous compared to the-
rily value of unity expected if the problem was dominated Fig. 8. Least significant angular interval between measurements
Iways by random statistical errors6). One may understand for a given level of resolution (grid size).
the sit this in terms of two effects. The first and more serious
Iliquen problem has to do with the computational premise that included angle between measurements common to a
1.3), the object may be represented by an array of cells cell at one edge of the grid is that which leads to a
S, nota with density uniform within each cell. Clearly, if the separation of one cell width on the other side of the
'nents scanned object has features whose density varies rapidly object. This is an angle of Iin radians and leads to a
~ inhere over the dimension of a cell side the representation maximum number of view angles of 27tn.
;; exam cannot be adequate. In this connection alternative Thus, these simple considerations suggest that 47tn2
.uch c assumptions might be made. One might assign densities measurements are needed to resolve n2 cells. In practice
lysis m on a grid and interpolate between points using any we have found this to be an overestimate. We have

variety of schemes. These methods are equivalent to found 3n2 to be adequate. We present this intuitive
I forcing various degrees of smoothness on the recon- estimate less as a hard and fast guide to estimating the
I "truction. They may well be called for in some instances; number of measurements required for a given resolu-

certainly the relaxation technique can trivially ac- tion than for the insight it offers in underst~n~ing the
Icommodate such a procedure. planning of measurements. For example, It IS clear

The second effect leading to poor values of the sum that one cannot get the same information out of a
of squares has to do with the nature of the probe. Beam a fixed number of measurements by increasing the
scatter and uncertainties in the beam profile will number of transversely separated projections at the

I introduce errors in the reconstruction which will lead expense of the number of angles of view (or vice versa).' to poor least-squares values. The number of scan angles must be quite large for
I reasonable resolutions (an experimentally disconcert-

6. Resolution ing requirement).
;"j 6. I. CHOICE OF NUMBER OF MEASUREMENTS

Consider a specific grid of, say, n x n squares. What 6.2. MEASUREMENT ACCURACY
I is the maximum number of measurements which can The accuracy with which measurements must be

give useful information? Clearly, two measurements made clearly depends on the density resolution required.
which are so closely spaced that they pass through If a region of k x k cells has density Po + Ap which
almost the same cells with almost the same average must be distinguished from a background density

,- path length in each cell will not yield substantially Po then measurements through that region will differ
: different information from each other. Very crudely by a fraction (kin) (Api Po) from other measurements
; one might say that a translation of one-half of a cell (the entire object is assumed to be divided into n x n

.fi,~ 'side is. needed. to produce substantially different in- cells). If the. a~erage measu~ement value is X with
r" formation. This would lead to 2n measurements at standard deviation (J the requirement
. each angle of view.

The sum'; The maximum number of useful view angles may .! ~ ~ > I (6)
ion num~' be estimated as suggested in fig. 8. The smallest useful (J Po n '"

:;; 1 :~ .

~ .
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was done for all the preceding examples. However,
it may not be possible to make the full scan in practice.
Restriction of the range of scan angles does severely
limit the resolution achievable. This matter was
quantitatively discussed in ref. 3. We do not have a
quantitative estimate of this effect in terms of the
iterative relaxation technique. One can see intuitively
that if one confines oneself to ::1:45° about the y-axis
(as in fig. 9a) one will have less information (hence,
resolution) about structure parallel to the y-axis
than that parallel to the x-axis. In fig. 9b, c, and d we

(oj. show the reconstruction of. the object depicted in
fig. 9a from measurements made respectively in the
range ::I: 45°, ::I: 67 t °, and the full ::I: 90°. In all three
cases the same 20 x 20 cell grid is used and the mea-
surements comprised 51 translations x 20 angles.
The degradation of resolution in the y direction
relative to the x direction is quite striking.

8. Artifacts and the limits of resolution

The central problem when faced with a reconstruc-
tion is to be able to say whether some selected feature
is "real" or an artifact. One might ask the question,

(d) "If I remove the structure and replace il by the density
Fig. 9. Computer simulation of measurements made with a of the local background, is the modified reconstruction
restricted set of scan angles. (a) Original phantom with indication significantly less able to fit my measurements?" One
of central axis relative to which angles were measured. (b) Re- should also perhaps require that all cells be uniformly
construction from measurements made between -45° to +45°. . " th3t
(c) Reconstruction from measurements made between - 67 .5° ren~~m~llze~ after removal of. the stru~ture so
to +67.5°. (d) Reconstruction from measurements made between the weIght of the reconstructIon remains unalte!'ed.

-90° to +90° (full range of angles). Implicit in our previous discussion has been the
fact that one has two separate resolutions to deal with:

is clearly a sufficient condition for observing the in- spatial and density resolution. The abilities to resolve
teresting region. (Note, however, that there is a less spatial detail and to detect density variations are
stringent requirement, discussed below.) distinct. They are, however, clearly correlated. One

There is another aspect to the measurement accuracy might expect that a very small object could more
which is harder to quantify. It emerges from the readily be detected if it was of a very different density
observation that one does not improve the reconstruc- from its surround. We will now suggest a quantitative
tion without limit as one increases the measurement measure of this effect.
accuracy. This is because the representation of the The question posed above has a direct answer from
object as a set of discrete cells with uniform density --the theory of least-squares fitting. The standard
(or any other interpolative representation) is imperfect. deviation in the value of a parameter (such as the e on
Qualitatively one might say that the difference between density of some feature) is estimated by the change that I
a measurement on the true object and the measurement in the parameter necessary to increase the sum-of. lded d
which would result from the optimum n x n cell ap- squares parameter by unity. In any given situation parate
proximation of the object gives a measure of the level one may determine that change by direct computation. hic tec
of accuracy which cannot usefully be exceeded. What Here we examine the general case. Consider an object ons wi
that level is will depend greatly on the structure of the of n x n cells all of which have density p except for a tributio
scanned object clump of k x k cells somewhere in the object which niques

have density p+Jp. We then estimate the change in h can c
7. Restricted range of scan angles 12 when we set the k x k cells back to p (and then ammi

Ideally one would wish to make measurements in the increase all cells by (k/ny Jp to maintain the same ubject
full range of possible angles, namely 180°, and this weight). We require this change to be greater than or ckgrol
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ow of the order of unity for the clump to be observable. on the region examined. We do not further consider ~
nractic:e' this leads to the requirement the tomographic analysis here.

seve~ X.1
(k)t [n r~ga~d to the techniques which attempt ~ full

er .. a ~ - J M ~ 1. (7) unfoldIng It should be noted that the presently available r
have., 1 . p n - . a.nalyses, are all comparable in the. amount of informa- ~{1

IS of th ' Here M IS the total number of measurements, X IS the tlon whIch they extract from a gIven set of measure- :

ntuitivete i average value of a mesurement, and (1 is the average ments. The choice of technique must therefore lie in
e Y-ax.Y I measurement error. considerations of simplicity, feasibility in terms of

I (he~ I This formula should be treated mo~e a,s a suggest.ive ~vailab~e computatio~al capacity, and applicability
: Y-a&ia ~timate than a hard and fast quantitatIve resolution In relatIon to the partIcular problem on hand.
nd d we ! liJl1it. For one thing the prescription to raise 12 Two alternative techniques have been published7).
icted.. by unity fr~~ its minimu~ value is only. a~plicable [n the fir~t 1. 2), the two-dime~siona~ pro~lem is

y in ~ when the minimum value IS reasonable (within a few separated Into a set of one-dimensional Integral I:)

.to ..c \;' ><\I! D of the number of degrees of freedom, D). eq_uations of a function with solely radial variation. tl
.he However, as we have previously pointed out, this may Tr1e measurements are expanded in a sine series with :'1"
, not be the case in practice. One finds oneself abandoned coefficients identical to those of the radial density
dir by statistical theory at that point. One tactic of despera- function when expanded in a limited series of Zernicke ,

lion is to readjust the estimates of error, 0", by the polynomials. .!
amount which will force the minimum value of 12 The second technique3) depends on the observation ,g
to be equal to the number of degrees of freedom. that the Fourier transform of a projected view is just :.1

Eq. (7) is interesting in that it suggests that the critical the value which the three-dimensional Fourier trans- :;i

J dimension for resolution of some feature is something form takes on a plane through the origin in Fourier :

~ intermediate between its diameter and area. rn any space. Projections at different angles build up the "1

e event, the parameter which must be used to charac- Fourier transform on different planes and enable one ~

s terize the spatial resolution of any reconstruction to construct the full three-dimensional transform, ~

,ts1 ; is the ratio of the size (diameter or area) of the feature which can then be inverted to regain the three-dimen-
-1ni to that of the entire object. sional reconstruction in real space. rn the inversion
. To give concreteness to eq. (7) we give a numerical one must interpolate between measured values of the

I example. Suppose that one makes 10000 measure- transform, since sampling points do not generally
ments, each of 30;0 accuracy, and asks how large a coincide with measured values and this interpolation i

Ie feature must be to be distinguishable if its density can introduce artifacts. Alternative interpolation 1

.0 reso" is 3% different from its background. In this case kin procedures have been investigated8). The method of "
at ions are is about 1/22, which means that the diameter of the Cormack 1.2) is mathematically equivalent to the
lated. One feature must be at least one twenty-second that of the Fourier transform technique3) but, clearly, differs i
,uld morJ scanned field. This is, of course, rather a modest substantially from it in practical application. [

nt densitf i spatial resolution but it is characteristic of this kind We suggest now some features unique to the
uantitative of reconstruction. iterative relaxation technique which might make it

advantageous in certain circumstances. i1swer from 9. Comparison with other techniques '
~ standard There are two general classes of analysis technique. 9.1. VERSATILE SCANNING
uch as the On the one hand there are those methods which, as As has been emphasized already, this method can
the change with that presented here, ~ttempt to generate a fully accommodate any series of measurements, since the
1e sum-of- unfolded distribution, disentangling the contributions only way the geometry enters into the computation is
n situation of separate cells. On the other hand there are tomo- through the Ijk of eq. (1). Thus, analysis of X-ray
mputation. graphic techniques which seek to accentuate specific projections taken with short-focal-length setups (and
:r an object regions within the viewed object by defocusing consequently with highly divergent beams) presents
xcept for a I contributions from all other regions. The tomographic no problem. Similarly, omitted or repeated measure-
')ject whi~ techniques offer especially simple methods of analysis ments and irregularly spaced measurements are easily
~ change ii which can often be implemented by purely mechanical handled.
) (and the. programming of the measuring apparatus. They Both the beam profile at the entrance to the scanned
1 the same are subject to the serious flaw of always superposing object and the variation of the profile with depth in the
ter than or a background of (imperfectly) defocused structures object are features which enter directly into the

{
" .
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calculation of the fjk and can consequently be fully construction. These can be largely cancelled out every-
accounted for. where else, but there is always a residual high-frequency

component which leads to the typical oscillatory A 1
9.2. VERSATILE RECONSTRUCTION GRID character of such reconstructions. In the iterative

While the discussion of the method has referred to relaxation technique any cell may differ in density
a Cartesian grid of cells there is no reason at all to by any amount from its neighbors without forcing
make that restriction. Clearly one can employ polar- the same high-frequency response elsewhere in the
coordinate grids or other regular arrays, perhaps system.
matching the cell size in any given region to the expected
structure there. Indeed, this can be extended to the 10. Conclusions
much more general situation in which the scanned We have developed an iterative relaxation technique
object is formed of a large number of regions of com- for resurrecting a three-dimensional distribution from
pIe x geometric form corresponding to the known a series of two-dimensional projections derived from
configuration of the object. One could then allow the it. The technique has been applied successfully to a
density of each region to be varied to fit the measure- number of computer simulations and actual laboratory
ments. Having suggested this, one might proceed to measurements.
the logical conclusion and attempt not only to modify The ability to retrieve the full three-dimensional
the density of each region but also its boundaries. To originating distribution is now well established. The
do this one would have to recalculate thehk after each question of the most appropriate technique remains
iteration, but that is not an unduly burdensome task. open and the answer will depend on details of the
If each region were represented by an octagon one problem. We have presented some advantageous
would have seventeen parameters (a density and eight features of the iterative relaxation technique.
coordinate pairs) for each octogen. With 10000 We discuss the achievable resolution. A typical
measurements one could readily analyze situations situation, which is reasonably undemanding in terms
having as many as 100 such variable regions. of computational capacity, would be the analysis of

about 10 000 measurements to generate densities on :!
9.3. EXTRA PARAMETERS 50 x 50 element grid.

We have implicitly assumed that each cell contributes
to the measurement through a single parameter (such I am grateful to Dr. C. Tobias for bringing this
as its density or absorption coefficient or stopping problem to my attention and for several subsequent
power). One might easily imagine associating with discussions. Drs. D. Chesler, A. M. Cormack, and
each cell additional parameters such as, for example, J. Lyman have made the raw data from their (separate)
the effective atomic number of the cell material. One measurements available to me and I have benefitted
would then search in a multidimensional parameter from discussions with all of them. This work was
space for the best fit to the measurements. Provided largely supported through the Donner Laboratory.
the measurements were sensitive to all the parameters,
one could hope to reconstruct them all simultaneously. References

1) A. M. Cormack, J. Appl. Phys. 34 (1963) 2722.
9.4. SHARP EDGES -'!)A. M. Cormack, J. Appl. Phys. 35 (1964) 2908; and private

We were initially led to this particular reconstruction communication. We are grateful to Dr. Cormack for supplyin.g
technique by the desire to simulate the internal structure us with the raw data for the experiment described in thl'

reference.of the human body. It seemed reasonable to look for 3) R. A. Crowther, D. J. DeRosier and A. Klug, Proc. Roy. Soc.
a representation which was capable of simulating large (London) A317 (1970) 319.
areas of fairly uniform density bounded by extremely 4) These data and much helpful discussion were kindly provided
rapid density variations such as occur at a bone- by Dr. J. T. Lyman of Lawrence Berkeley Laboratory.

I . t' Th . I I . .. 5) We are indebted to Dr. D. Chesler for these data.
musc e mtefJace. e spatia reso uti on Implied by 6 ) Th I fth f .. II'" hil!h .. .. e va ue 0 e sum 0 squares parameter IS exceptJona J .
the cell size has ItS counterpart In the highest-frequency in this case. We believe the poor fit is the result of the p<1(1r
component used in, say, the Fourier transform match between the uniform analysis grid and the nonuniform
technique. However, there is a slight difference in that measurement grid.
the use of a high frequency to effect a rapid density 7) A third analY~is technique ~as. recently. been ~eveloped b)

. . . D. Chesler (private communIcation). ThIs technique may bC

variation at one boundary results III the presence of particularly well suited to analysis with small computer'
high-frequency components everywhere in the re- 8) O. Tretiak, private communication.


