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I. INTRODUCTION

; WE consider a parallel beam of heavy charged par-
. ticles incident on a plane layer of homogeneous
absorber. We will calculate the function F(E,S), where
F(E,S)dE is the fraction of the particles with energy
between E and E+dE after a path length S has been
traversed in the absorbing medium. In calculating
F(E,S), electron capture will be neglected.

It can be shown that

E e .
- IFES) / P(E)F(E,S)dt
as .

+ / PEHDF(E+,S)d, (1)
1]

. where P(E,f)dtdS is the probability that a heavy
P charged particle with energy E will lose an amount of
> energy in the interval /—/4-df in traversing a thickness
¢ of absorber dS. Almost all previous work has been based
g on Eq. (1).! We begin by discussing the earlier work on
energy straggling. In all of these theories it is assumed
that the initial beam is monoenergetic.

A. Thin Absorber Approximation

Vavilov? has solved the energy straggling problem for
absorbers which are so thin that one can replace P(E,)
% and P(E+1t) in Eq. (1) by P(E.t), where E, is the
E initial energy. Once this approximation is made, one
P can easily solve for the Laplace transform of F(E,S).
b The numerical evaluation of the inverse transform
yields the approximate F(E,S).

When relativistic corrections are small, the Vavilov
approximation begins to fail for reductions in average
energy greater than 10%,. In the case of protons or
a particles, F(E,S) becomes almost Gaussian by the
time this approximation becomes inaccurate.

The Vavilov theory, the best theory for thin ab-
sorbers, replaces more approximate theories by Landau?
;. and by Symon.4
1. Fano, Ann. Rev. Nucl. Sci. 13, 1 (1963).

:__*P. V. Vavilov, Zh. Eksperim. i Teor. Fiz. 32, 920 (1957)
¥ [English transl.: Soviet Phys.—JETP 5 749 (1957)].
- #L. Landau, J. Phys. USSR 8, 201 (1944).

* ‘K. R. Symon, Ph.D. thesis, Harvard University, 1948 (un-
L. published).
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The theory of energy straggling attempts to calculate F(£,S), where F(E,S)dE is the fraction of the heavy
charged particles which have an energy between % and E+dF after a path length § has been traversed in
absorbing medium. This paper develops a method of calculating F(£,S) for path lengths large enough so
that F(/,S) is almost Gaussian. The method remains valid until a large fraction of the particles run out of
energy. The theory is applied to calculations of F(Z,S) for 50-MeV protons in Be and for 5.3-MeV a particles
in air. The calculations for « particles in air are in good agreement with the experimental results of Rotondi
and Gieger. The theory is also in agreement with numberical calculations by Tschalir.

B. Intermediate Absorber Thicknesses

At small S, the energy spectrum is strongly skewed,
with a long tail toward lower energies. As S is increased,
the skewness becomes smaller and F(E,S) approaches
a Gaussian.!** If an absorber is thick enough so
that F(E,S) is almost Gaussian, but thin enough so
that the full width at half-maximum is small compared
with the mean energy, we say that its thickness is
intermediate.

The part of Symon’s work* which deals with ab-
sorbers of intermediate thickness has not been published.
Judging from the continued use!-*7 of the more approxi-
mate Bohr theory® in this region, it seems that many
workers are not aware that Symon’s theory is much
more complete than that of Bohr. For this reason we
will now outline the Symon approximation.

Symon makes use of the fact that a statistical distri-
bution function can be calculated from its centra.l’,./ )
moments.® In particular, if the distribution function *
does not differ greatly from a Gaussian, then only the
first few central moments need be known. (The actual
construction of a distribution function from its central
moments will be discussed at a later point in the
present study.)

The equations to be derived in this section are due
to Symon, but we will also use them in order to discuss
the Bohr theory. We define the central moments A,(S) -
by

o

4.(8)= [ [E—(EJ'F(ESHE, ()

where

(Ey= / " EF(E.S)E. @)

8J. R. Comfort. J. F. Decker, E. T. Lynck, M. O. Scully, and
A. R. Quinton, Phys. Rev. 150, 249 (1966).

¢D. L. Mason, R. M. Prior, and A. R. Quinton, Nucl. Instr.
Methods 45, 41 (1966).

TE. Segré, Nuclei and Particles: An Introduction to Nuclear
amiS Subnuclear Physics (W. A. Benjamin, Inc., New York,
1965).

8 N. Bohr, Phil. Mag. 30, 581 (1915),

®H. Cramer. Mathematical Methods of Stalistics (Princeton

University Press. Princeton, N. }., 1946).
611




s
ey

612 M. G.

On differentiating Eq. (2) we find

dA. d{E)

OF(E,S)dE
-—n——4"_1+/ [E—(E) e
4s

If we use Eq. (1), we find that
dd d(E) non(—1)E
et T / ML)
s ds L=t (n—L)! Jo
X(E—(E)""LF(E,S)}E, (4)

1 20
ML(E)=Z_' / P(E,NOtLdt. )

-

Further details concerning the derivation of Eq. (4)
may be found in Symon’s thesis.

Equation (4) provides a good starting point for
understanding all intermediate path length theories.
We first consider the Bohr theory which argues from the
central limit theorem? that F(E,S) will become
Gaussian. Once F(E,S) reaches the Gaussian limit,

F(E,S)=[2rAx(S) I""* exp[ —(E—(E))* 242(5)].
Note that only (E) and 42(S) are needed to determine

. 'F(E,S). Bohr argues that the Gaussian limit will be

reached while the full width at half-maximum is still
very small compared with the mean energy. When n=1,
Eq. (4) yields

d(E) =
0= -———/ M(E)F(E,S)YE, . (6)
ds 0
where we have used
A4 o(S)E 1 N
When n=2, Eq. (4) vields

A 1(5)50.

“dA,

—=—2/ M\(EY(E—(E))F(E,S)dE
+2/ M E)F(ES)E. (7)

The Bohr approximation assumes that F(E,S) is so
sharply peaked about E=(E) that M(E) and M.(E)
are essentially constant over the region where one ob-
tains a contribution to the integrals in Egs. (6) and (7).
Consequently,

d(E) dA4, ‘
—= - l((E)) y T 2M2((E/) ’
as ds
and-
Eo M (E)dE
A2(5)=2/ Nl ®)
(E) MI(E)

where E, is the initial energy. If we use the classical
expression for P(E,!), we obtain Bohr's original result.
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Symon allows for deviations from a Gaussian form**®
He also derives the 4,’s in a better approximation. We
will now derive .15(S) in Symon’s approximation. In -
evaluating the integrals on the right-hand side of =
Eqgs. (6) and (7) we use g

dM,
Mi(Ey=M((E)) +E((E))(E‘- (E))
and
M,
Mz(E)=Me((E))+E((E>)(E—(E>) .
We obtain

)
“E ey,
FA)

dA, aM
= —2——((E>)A +2M2((E))
ds

On solving the last two equations simultaneously, we
obtain

M\(E))7?
an 2
M({E)o)

X lAz(OH"Z

Evo My(E)r M1({E)o)T? e
[—] dEl. (
&y MA(E)L M\(E)

In the case of nonrelativistic protons or a particles,
Eq. (9) begins to differ appreciably from Eq. (8) by the: -
time the mean energy is reduced by 209,. Once the }eg
mean energy is reduced by 509, Eq. (9) yields an 4,
which is larger by more than a factor of 2. '~ |

To understand the difference between the Bohr and " 3
Symon approximations, note that M,(E) is the average *"
rate of energy loss by particles with energy E. When we
replace the M1(E) by M, ((E)), we assume that the
average rate of energy loss by all particles is the same. .
When Symon includes a linear variation of M(E), he 1
includes that fact that the width of /(E,S) changes not
only because of statistical fluctuations but also because
particles with different energies lose energy at difTerent
average rates. We shall eventually show that the non-
statistical type of change in F(E,S) completely domi-
nates its evaluation at large S.

C. Thick Absorbers

Once S is made so large that it is not correct to
assume that the full width of F(£,S) at half-maximum
is small compared with (&), we say that the absorber is
thick. In this region the Symon approximation becomes
poor. £

One might think that Eq. (4) could be used in this
region. However, the M.(E) vary so much over the
region where F(E,S) is nonzero that the integral in
Eq. (4) cannot be expressed in terms of a reasonable
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umber of 4.’s. None of the previous theories holds in
n

this region- . .
The purpose of this paper is to show how to calculate

FES) throughout the intermediate and thick absorber
(S
regions.

JI. QUALITATIVE DISCUSSION OF
THICK ABSORBER LIMIT

At large path lengths, where V4. is large compared
with the maximum possible energy loss in any single
collision, the collision integral in Eq. (1) can be ex-
punded as

-

[ " [PE+LOF(E+1,S)~P(EDF(ES)Jdt

F:] k B

k=1

by a generalization of the Fokker-Planck expansion. If
P(E,!) were analytic, one could arrive at the expansion
by simply using a Taylor series for P(E+, H)F(E+t,S).
[n any case, the infinite sum converges very rapidly once
the full width at half-maximum of F (E,S) becomes
much larger than the maximum possible energy loss in
any single collision by a particle with the mean energy.
Equation (1) becomes

OF(E » gk
( ,s)= Y. —[M.(E)F(E,S)].
aS k=1 E¥

In the case of a particles or protons at nonrelativistic
energies, the energy spectrum becomes essentially
Gaussian by the time the mean energy is reduced by
10%. The spectrum remains nearly Gaussian until the
mean energy is reduced to less than 35% of its initial
value. Hence, to a good approximation only As(S)
and (E) are required for the calculation of F(E,S).
Symon’s expressions for (E) and A4(S) are still valid
when the spectrum becomes nearly Gaussian. Hence,
one would obtain the same values for (E) and As(S)
if My(E), MA(E), etc., were all set equal to zero. This
suggests that the Fokker-Planck equation

OF(E,S) @ 9
=—[M(EJF(E,S)]+—[M.(E)F(E,S)],
S OE oL’

is valid for proton or a particles once the mean energy
has been reduced by more than 10%. In the case of
lighter particles, (E) must be reduced somewhat farther
before this equation becomes valid.

We will now investigate the possibility that even the
second term will eventually become unimportant, so

that
dF(E,S)

aS

a
~—[M(E)F(E,S)]. (10)
aE
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To see that Eq. (10) may become valid for thick
absorbers we let

P(E,t) = I(//l‘:l2 y if Imin SIS {max
=0, otherwise. (1) A

Now, K=wVZz%*M/m, N is the number of absorber
atoms per unit volume, Z is the number of electrons
per atom, z is the number of electronic charges of
the incident particle, e is the electron charge, M is
the mass of an incident particle, m is the electron
mass, tmax= (4m/M)E, tmin=1%/lmasx, and I is the mean
excitation potential of the absorber molecules as defined
by Fano.! This form of P(E,) neglects relativistic
effects and inner shell corrections.
If we substitute the approximate P(E,) into Eq. (5),

we find

M\(E)=(Q2K/E) In(dmE/MI)
and

MAEy=02m/M)K.

In evaluating M(E) we have assumed that /msx>>¢min.
The latter condition is necessary for this form of P(E,)
to be accurate. To simplify the mathematics we approxi-
mate as follows:

wan 5 (5 o)

a=1—[In(m(E)y/ M) ™.

where

If 4m(E)o' MI =20, the approximate M,(E) represents
the original function with an error smaller than 5%, for
0.5(E)y< EZ1.5(E). The approximate M(E) is good
enough for use in what follows.

1f 4.(0) =0, Eq. (9) becomes

15‘1
e

¥
"
Eo Mo(E) fM1((EN\? S
.-lz(S)=2f ( )( « ))) JE,
&y MA(E)\ M\(E)

where E, is the initial energy. We find

2m AmE\ T}
Ao(S) = —Eoz[(3a+ 1) ln( )]
M MI

o) (2]

Consider Symon’s equation for A,:

dAs dM\((E))
= —2————A4,+2M:((E)).
ds d(E)

We will now determine how much (E) must be reduced
before the nonstatistical term becomes ten times as
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large as the statistical term. We have

2M,({E)) - i

2{dM\((E))/d(E)]| 45~ 10’

or

(E) [ 1=[In(4m(E)/ M) ]“‘
—=
Eo  L20—15[In(4mEy M D) T
[ln(4m<z~:>,M1')]m[ ((E))“““:l"‘
X| ———— 1-— .
In(4mFE,MI) E,
If 4mEo/MI=30, one finds (£)M0.35E,. When imkF./
MI> 30, it is found that {E) does not have to be reduced
quite so far. We will now check to see if Symon’s equa-
tion is still valid at this point. Let 4mE,/MI =50 and
(E)=0.35E,. Then (4;)"/2/{E)=2.5(m ‘M2, Symon's
equation is still valid for protons or a particles. How-
ever, it is questionable for pions and muons. We then

see that in many cases of interest 4,(S) starts to evolve
according to

dA 2 sz 1((E)) 4,
s d(E)

e by the time (E) is reduced to 359, of its initial value.

Hence, at larger path lengths nonstatistical changes
dominate the evolution of 4,(S). We can show that the
same is true of 4; and A,. At larger S, we get the same
evolution for the central moments if we set M 2(E),
M3(E), etc., all equal to zero. Thus, at larger S , Eq. (10)
is valid.

It is reasonable that Eq. (10) will also become valid
at large S in many cases where the simple P(E,f) used
in the previous discussion is not sufficiently accurate.
All that is required for the validity of Eq. (10) is that
F(E,S) should eventually become broad enough so that
its rate of change in shape and width due to differences

" in average rate of energy loss should dominate the rate

of change in shape and width due to statistical fluctua-
tions. We will now investigate the possibility of taking
advantage of the validity of Eq. (10) at large S.

Equation (10) can be solved by the method of
characteristics. We find

F(E,S)=G(R(E)+S) M\(E), (12)
where G is an arbitrary function and
E qUu
R(E)= /0 YN (13)

R(E) is the total distance that a particle with initial
energy E would travel before coming to rest if it lost
energy at a continuous rate given exactly by

dE/dS=—M,(E).
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The mean range, as measured along the actual path of
the particle, is given approximately by Eq. (13).10
Because of the close relation between R(E) and the
mean range of a particle with energy E, we can make
use of tables prepared by Whaling!! in relating R and E.
The validity of Eq. (10) at large S suggests that we
should let
H(R,S)=M\(E)F(E,S). (14)

Once Eq. (10) becomes valid, H(R,S) becomes equal
to G(R+S). Hence, at large path lengths H(R,S) takes
on a constant shape and width. In Sec. III, we will
develop a method that allows us to calculate H (R,S)
until Eq. (10) becomes accurate, and hence determines
it for arbitrarily large S.

III. CALCULATION OF H(R,S)

We can write

1 o
HR,S)=— [ ¢ *PRg(P,S)dP, (15)
where T
g(P,S)= / ¢PRH(R,S)R. (16)
We express g(P,S) as
= K. (S)(iP)t
E(P,S)=CXP[ LZO—fT"—“], (17)

where the K’s are the well-known cumulants of the
distribution.!?
We define the central moments of H(R,S) by

P.(S)= / i (R—R)"H(R,S)dR, (18)

where

R(©S)= / i RH(R,S)dR. (19)
[

The P,’s are related to the cumulants of H(R,S) as
folows!2;

Ko(S)=0, K\(S)=R(S),
K2 (S)=Py(S), K3(S)=Py(S),
K4(S)=P4(S)—3(P2(S))2, etc.

A Gaussian distribution function has K,(S)=0 for
n>2. If the distribution function is close to Gaussian,
one finds that the infinite sum in Eq. (15) converges
rapidly and only a few terms are needed to represent
g(P,S) properly. In the case of nonrelativistic protons
or helium ions whose mean energy has been reduced by
more than 3% only terms through n#=3 need be re-

1 U. Fano, Phys. Rev. 92, 328 (1953).
' W. Whaling, in Handbuch der Physik, edited by §. Fligge
(Springer-Verlag, Berlin, 1958), Vol. 34, p. 193, .
2 M. G. Kendall and A. H. Stuart, The Advenced Theory 0f
Statistics (Hafner Publishing Co., Inc.,, New York, 1963;.
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rained. Once the mean energy of the protons or helium
ions has been rec_luced by 10%, only terms through
=2 need be retained.

If terms through # =3 are sufficient, one can invert
the Fourier transform exactly in terms of the Airy
function. H(R,S) becomes

1 = _
H(R,S) =0 / exp[ —iP(R—R)

—4iPy(S)P3—}Ps(S)P]dP

e’ Ai(w)
_ , (20)
(By1)3(2Py) 1
where —y+(48y.)!
w=—,
(313 . e
—y+(7271)!
V=,
12y,
y = (R —R)/EZPZ(S)]”’
) Y1=—P(S)/{3[2Px(5) "2},
an

1 %0
Ai(w) =- / cos(33+wt)dt.
0

k.

If H(R,S) deviates so far from a Gaussian that more
terms are required, one may, as in the case of the
Vavilov theory, be forced to invert the Fourier trans-
form numerically.

We can also express H(R,S) in the form of a Gaussian
times an Edgeworth series.!? Usually, Eq. (20) is almost
as accurate as a Gaussian times a six-term Edgeworth
series. Symon* has used the Edgeworth series to calcu-
late F(E,S), and Lewis!® has used it to calculate the
range distribution function for heavy charged particles.

We have seen that H(R,S) can be determined from
its cumulants, and that the cumulants can be calculated
from the central moments, We will now show how the
central moments can be calculated.

On differentiating Eq. (18) one obtains

dP.(S) dR
——=—n—P,_(S)
ds ds
© < 9H(R
+ / —(—i)[R—E‘]"dR. 1)
o 88
Now,
dH(R,S) dF(E,S)
as 7 as
and

dR=(dR/dE)dE
=dE/M\(E).

3 H. W. Lewis, Phys. Rev. 85, 20 (1952).
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Thus, Eq. (21) becomes

dP,(S) dR
= - n—Pn_l(S)
Ay ds

(E,S)

* oF
gl
0 as

Equation (1) gives

= dF(E,S) _
/ [R(E)—R]JdE
0 as

[R(E)-RJdE. (22)

=/ [ [P(E+I,I)F(E+I,S)—P(E,I)F(E,S)]
P X[R(E)—R]"didE.
Let

Jo= / i / " P(E+t,0)F(E+,S)[R(E)~R]dtdE,

Ji= / " FE,S)M(EYR(E)— RTrdE.

Then
[R(E)-R7E.

J‘Z_Jl=

= 3F(E,S)
/; as

If Jo—J: can be expressed in terms of the P,(S)’s,
Eq. (22) will become a set of simultaneous differential
equations from which these central moments can be
calculated.

In evaluating J,, we interchange orders of integration
and let E'=E-4¢. J, becomes

Jo= / “a / P(E')F(E'S)[R(E'—t)~R]"dE’
0 ¢

~ / " / " PR S)R(E ~)—R]dE,

where we have assumed that F(0,5) =0. Interchanging
orders of integration,

Ja= / F(E'S) / P(E'N[R(E'—1)~R]"dIdE’.
(1} o

If [R(E'=1)—R]" is expanded in a Tavlor series
about /=0,

k

o x d _
Je=3 (—1)* /0 F(E ,S)EE[R(E y—=R"dE

k=o = P(E' )tkdt
X / ke
0 k!
© 0 alc
=3 (—1) / F(E',S—[R(E)~R "M (E)E".
k=0 0 oE’*

R
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Subtracting J,,

Jo—=Jy= i (_l)k

k=1

Equation (22) becomes

dP.(S) dR
+n—P,_(S)=
as as

o

2 (=1}

k=1

ak

a—E—’;[R(E') ~RJdE . (23)

X[ F(E'S)YM(E)
0

We would like to approximate the right-hand side of
Eq. (23) in terms of the P,(5)’s. In order to achieve
this, we will first need to change variables. We use
Eg. (13) in order to express E in terms of R and note
that ‘

F(E,S)dE=F(E,S)(dE 'dR)dR

=H(R,S)dR.
Also,
d OR ¢
3E OE oR
d
= U(ER)—,
dR
where
U(E)=[M\(E)T.
Consequently;,
dP, dR %

das

-1

+n—P, =3 (=1) / ) H(R,S)M(E(R))
ds k 0 .

g
X[U(E(R));EJ (R—R)"dR. (24)

We will now use Eq. (24) in order to derive expres-
sions for R, P,(S), and P;(S). A study of these cases

will point out approximations which will be useful for
general #.

n=1. Using Py(S)=1 and Pi(S)=0, we have
dR = =
— =% (1 / HRSMER)
dS k=1 0

a k
X[L'(E(R))——] (R—R)dR.
3R
Note that

a k a k—1
UVER)— | R~F)=| LER)—| ©
[ (E(R»aR] (R—R) [ (E( »aR] U(ER)

ak-l
aEk—l

U(E(R)).

£ al: _
% f F(E'S)—[R(E") ~R "M (E')dE".
0 oE’F
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Then
dR o © k—1 o
B R / H(R,S) M E(R)——U(ER))R.
dS k=i 0 E#1

In order to see what approximations are plausible, we

use the P(E,) from Sec. I1I. Then M,’s corresponding
to this P(E,!) are

M\(E)=QK E)In(4dME MI),
K(4m M)n-iEn—2

M. (E)= , ifa>1. (25)
ni(n—1)
We have
dR w (—1)k(dm M)+-1 p=
—_—=— / H(R,S)E*(R)
ds k=2 2(k—1k! 0
s I‘ E(R)
x ]dR
oE=LIn[4mE(R). M1]
Now,

d dmE\ ! dmE\"! 4mEN\"!
—E(ln———b> = (ln———> [ 1— (ln ) ] ,
oE MI M1 MI
a2 4mE\—? 4mEN!
E(ln =(ln—> ,:1 —2<ln-—) ]/E
MI MI

9E?
It is fairly evident that as increases, each new term
is smaller than the previous one by a factor of the order

of m/M. Even in the case of muons one has as an
excellent approximation:

dR/dS=—1.

4mE>‘1
MI

To see that the last result is not strongly dependent on
the validity of Eq. (25), let tm(E) be the maximum
possible energy loss for a particle of energy E. Then

- M"(E) 1 o o -
— = / P(E)idt / / P(E,f)m=dt
M,.._](E) 0 0

S, (F).

Thus, if the maximum possible energy loss is very small
compared with E, we expect

a’(-lll ak—ﬂL,’ ak—l LY ak—zl;’ .
IM — k=1 = tm(E) / k ’
dEF-1 QE*—? OE*-1 OE+
«1, (20)

where the arguments of the functions have been sup-
pressed for brevity. We will assume throughout this
study that the last inequality holds. Again, the terms
in the sum are found to be small compared with unity

"
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and R(S)=R(0)—S. We define E=E(S) so that

E
RO)-5= / dU M(U). 27N

[n the approximation B=R(0)—S, we have E = E(R).

Now _ _
dE dS=—-M\(E).

To improve our first approximation let

dR < dU(E(R))dR
—=—1+ / H(R,S)MAE(R))—————— .
ds o OE

We assume that H (R,S) remains fairly sharply peaked
about R until Eq. (10) becomes valid. If so, we can use

QU(E(R)) _ U (E) -
WAER))——=MyE)—— L
dE oE

] _AU(E)R-R
+‘-:[M 2 '—'_—:|——_* .
oF aE JU(E)
This is the first two terms in a Taylor series about R.

We then find

dR _oU(E)
—=—1+MyE)———.
ds oF
Integrating,
_ _ Ew AU (E)
R(S)=R(0)-S+ M (E)U(E) dE. (28)
B(s) oE

Equation (28) includes a linear variation of M»(E) and
variations of M(E) through quadratic terms.

The reader may have worried about the fact that
U(E) becomes infinite when 4mE; M I =1. The difficulty
is only apparent since the approximate M,’s are only
valid if 4mE/MI>>1. The problem would not arise
with a correct set of M,’s.

n=2. In this case, Eq. (24) vields

dP, ki *
—I= 3 (=1 / H(R.S)M(E(R))
dS k=2 ¢

d N
X ]: (,’(E(R))——] (R—R)%4R.
3R
If the M ’s given by Eq. (23) bear any similarity to the
correct ones, the £=3 term is smaller than the k=2
term by a factor of the order of m/M. More generally,

if Eq. (26) is valid, the terms with £>2 are small
compared with the £=2 term and

dP, *
“r, f H(R,S)MAER))
as - Jo

1 _
X[UZ(E(R))+—(E(R))(R —R):IdR .
oL
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We assume, once again, that H(R,S) is fairly sharply
peaked about E. Let

_ AUEYR-R) oUE) (R-R)?
CAER) = Ux(B) 2 DR FUE) R-R)

ok  U(E)
and _ _ -
AU(E(R)) oU(E) ‘ ?U(E) R—R
E  oE @ o U(&)’
with _
_ OM.E)R-R
.1![_'(E(R)) =J[3(E)+ = .
dE  UE)
These approximations lead to
dP- _aU(E)
—_=—4.v[2(E) = P2
d ok?
AU (E) oM AE) o
—6? P,—2M,(E\UYE).

M,(E) is usually a very slowly varying function. In
fact, the M:(E) given by Eq. (25) is constant. To get
some idea about the importance of the terms involving
P, treat M,(E) as a constant. The integrating factor
for the resulting differential equation is

exp[4M.(E)aU(E)/dE].
Using the M,’s from Eq. (25),

_QUE) 4my 4mE\—! AmEN\!
M (E)—— =—<ln———> [1—<ln ) ]
oF M MI MI

The latter quantity is always very small compared with
unity in any case where the P(E,) used in Eq. (25) is
valid. Because of the inequality in Eq. (26) we expect
the quantity to be small in almost any case. We will
replace the integrating factor by unity. P»(S) becomes

E@®)
Py(S)=P:(0)+2 M,y(E)UE)E.
Es)

(29)
n=3. In this case only the first three terms on the
right-hand side of Eq. (24) are important and

dP; dR
et 3—Py(S) = ~3P,
s dS

< a 2
+ / q (R,S)Mz(E(R))[:L’(E(R));—IE] (R—R)4R

< a 3
- f H(&S)M«E(R»[U(E(R»a] (R—R)R.

it
P
5
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If we use our previous approximation for dR/dS,wefind we find

UE)
—P,
oK

dU(E(R))
X[
oE

+ / H(R,S)M(E(R))
(R—-R)*+6UER))(R —l?)]dR

* ?U(E(R))
- / H(&S)M«E(R»[s“—(k

OU(ER))
+I8U(E(R)————(R—R) +6L"(E(R))]dR.

dE
Because of Eq. (26)

U _ U _
Mr—(R—-R)*>»M;—(R—R):
oFE E?

_ U _
6L (R—R)M>>18U—M4(R~R).
oE
Thus, it is quite accurate to use

o a 3
/ H(R,S)M«E(R»[U(E(R»—] (R—RydR
0 oR

=6My(E)UNE).

In evaluating the other integral, the same approxima-
tions are used for U/dE and U? as in deriving Eq. (29).
We find

dP; [ oUE) oMyB) oU®E)
+3[5 +3 2 )]P 3

—y . — T =
dE oE oE K2

d _ _ - _
= —6P2(S)E[L”(E)Mz(E)]-f-ﬁJl[g(E) UA(E).

Once again the integrating factor is approximately
unity, and
Ew)

P(S) =P(0)+6 /

P—LUNE)M.(E)JHE
E(s dEL

Ew) _
—6 My(E)UYE)JE.
Es)

Consider the integral involving P,. On integrating by
parts and using

dP, dE= —2M(E)UNE),

Em d _ _ _
/ Pr—[UNE)M,(E)dE
Eisy dE

=[U%E(0))M(E(0))P5(0)
—UNE(S))MAE(S))P(S)]

E)
+2 / [MAE) PUSE)E.
Hence, B

P3y(8) = Py(0)+6[ U(E(0))M 1(E(0))P2(0)

— UXE(S)MAE(S))Px(S)]

Ew)
+12 f [My(E)PUE)E
ES)
E)

-6 M(E)UYE)E. (30)
Es)

The fourth cumulant can be calculated by solving
d d _ _
E[Pq—.;(l)z)z = —12P3;E[L'2(E)M2(E)]

ol (E)

+36UXE)M 5(E) P,

d _ . _ _
+24E[U3(E)M;(E)]P2—24(’5(E)M4(E). (31)

In the case of originally monoenergetic a particles,
protons, or K mesons, three cumulants suffice, except
at short path lengths where the Vavilov theory holds.
Three cumulants also suffice for nonrelativistic pions
and muons if they were originally monoenergetic, and
their mean energy has been reduced by at least 209%,.
Thus, in most intermediate or large path length situa-

“tions we can combine Egs. (20) and (28)-(30) in order

to calculate H(R,S) and hence F(E,S) from Egs. (13)
and (14).

IV. SOME SPECIAL CASES

In this section we will demonstrate how the theory is
used to calculate F(E,S) in two special cases.

A. Straggling of 50-MeV Protons in Be

In this situation, relativistic effects can be neglected,
and inner shell corrections are small. The M «(E)’s given
by Eq. (25) can be used.

In the case under consideration, one has 4mE, M1
=1700, where E, is the initjal energy of the protons.
We will now demonstrate how one can derive simple
but accurate formulas for R, P., and P, if AmE, M1
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2 100 and Eq. (25) holds. From Eq. (25)
U(E)=(E/2K)(IndmE/MI)™'.

we will now investigate the possibility of approximating
this {'(E) by a simpler function U4(E), where

Ey/ dmEN"'y EN®
U (E)= (ln ) (—) ,
2R\ M1 E,

a=1—(ndmE, MI)'.

with

The reader will recognize this approximation as being
identical to the one used in calculating :12(S) in Sec. II.
U(E) and U4(E) are equal and have the same first
derivative at E,. This leads us to think that the approxi-
mation will be very good for E near E,. In order to see
how good the approximation is for smaller E, let
A\'=E3Eo, Uo=4mE,/MI, b=an0, and ’

R(X)=U(E)/Ud(E)
=exp{(InX)/6—In[1+(nX)/b]}.
Let ¥(X)=—(nX)/b. Then
R(X)=e®/[1—y(X)].

R(X) is graphed as a function of y in Fig. 1. From Fig. 1
we see that when y(X)<0.19, the error made by re-
placing U(E) by Ul(E) is less than 2%. If E/E,
> exp(—0.195), U.(E) represents U(E) with an error
less than 29, If 4mE,/MI=100, E can be reduced to
0.42E, before the error becomes greater than 2%, In a
similar way, we find that E can be reduced at least as
far as 0.28FE, before the error made by using UJ(E)
hecomes greater than 3%,.

The integrals involved in Eqs. (28)-(30) have the
property that the integrand decreases as E is decreased.
In fact, our qualitative discussion in Sec. II suggests
that most of the contribution to these integrals should
occur before the mean energy is reduced to 35% of
its initial value, that is, from the region where U.(E)
approximates {(E) veryv accurately. We will replace
U(E) by U.(E) in evaluating P,, P, and R.

From Eq. (28)

_ - mE©0) 4mEON!
R(S) =1f(0)—s+-——L‘(E(0))(1n )
2M MI

E'( S)\ 22
X[l —(—_———) :I , (32)
E0)/
where one must use E(0) instead of E, in calculating ¢
(one does not have to make this distinction if the initial
beam is monoenergetic). From Eq. (29)
2m_ _
Py(S) = P,(0)+—[L(E(0)E(©0)J*(3a+1)
’ imE(0)
X(ln

)_ (1—r+), (33)
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Fic. 1. U(E)/U.(E) versus y(X). M (E) is the average stopping
power of a particle with energy E, U(E)=[M.(E)1, U,.FE) is
the approximate U(E), b=In(4mE,/MI), and X =E/E, From
this graph one can determine the error made by approximating
the stopping power by an expression of the form M.(E)
=M (Eo)(Eo/E), witha=1—b71,

with r=E(S)/E(0). From Eq. (30) we have

ps<s>=pa<o>+§[E<o>L'(E(o»J

| 4mE(0) _IP 1 —r?
X(n M ) (Ot =]

i

+4(m MYLUEODEO) U -a)%0ra), (8 ol
where »
1 —plat2

(1—a)(4a+2)

3(1—rse+1)  3pta(l—rle+t)
Se+1 3a+1

g(r,a) =

If the initial beam is monoenergetic, we can express
Y1 as

y1=—15(m M2 (3a+1)¥2(1 —a)'/?
X[1—rie+1]3%(r,a). (39)

For 50-MeV protons incident of Be, we use /=64 eV
and find a=0.866 and U(Eo)=105 mg Me\" cm?
Equations (33) and (35) yield the values of P.(S) and
v; tabulated in Table I. Equation (27) was used to
relate the 7 values in Egs. (33) and (33) to the corre-
sponding absorber thicknesses.

In Figs. 2 and 3, we have graphed H(R,S), as calcu-
lated from Egs. (20), (33), and (33), for r=0.97 and
for r=0.90. In order to show that H(R,S) evolves
toward a Gaussian as S is increased we have also
graphed

He(R,S) =[27Px(S)] V2 exp[ —(R—R)* 2P+(S)].

Note that H(R,S) is almost Gaussian by the time r is
reduced to 0.9.

In the above case, or in any other where the full
width at half-maximum of F(E,S) is very small com-
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F16. 2. H(R,S) and Hg(R,S) versus R—E for 50-MeV protons
in Be. /5(R,S), the Gaussian approximation to H (R,S), is given
by the dashed line. The mean energy has been reduced to 48.5
MeV.

pared with the mean energy, F(E,S) can be calculated
from H(R,S) quite easily. Note that

E
R—R= / U(E)dE'
E(R)

=U(ER)E-ER)], (36)

for any E which is very near E(R). If S corresponds to
a thin or intermediate absorber thickness, Eq. (36) is
accurate at any E for which F(E,S) is appreciably
nonzero. In the above situation

F(E,S)=U(ER)H(R(E),S). 37

When Eq. (36) is valid, the shape of F (E,S) is almost
identical to that of H(R,S).

When Eqgs. (36) and (37) are valid, F(E,S) can be
calculated directly. From Egs. (20), (36), and (37).

U(E(R))e’ Ai(w)

F(E,S)=
(3v1)V32P,) 12

, (38)

where 71, P2, v, w, and Ai(w) are the same as in Eq. (20),
except the y’s in w and v must be replaced by

y=U(ER)[E—ER)])/(2P:(S)).

Equation (38) holds when all of Eqgs. (36), (37), and
(20) are valid. However, the three cumulant approxi-
mation used in deriving Eq. (20) is not valid at small S

Tasie L B, P;, and v, for 50-MeV protons in Be.

S R Py(S)

r (mg/cm?)  (mg/ecm?  (mg?/cm?) 7
0.98 105 2770 78 0.0375
0.97 157 2718 116 0.0307
0.96 206 2669 152 0.0266
0.90 501 2374 366 0.017
0.70 1330 1545 806 0.0077
0.50 2080 795 1020 0.0057
0.30 2567 308 1100 0.0045
0.16 2778 97 1112 0.004
0.00 2875 0 1116 0.0039
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where v120.03, and Eqs. (36) and (37) are not valid in
the thick absorber region. Thus, we should remember
that Eq. (38) fails both at small and large S. -

If 1 becomes smaller than 0.01 before Eq. (38)
becomes inaccurate, F(E,S) can be approximated at
larger S by

F(E,S)=[2r4,(S) T
Xesp(—[E~E(R)T/24:(5)), (39)

where

A42(S)=P:(S)/ [UER)) 2. (39b)

At large S, the energy spectrum becomes fairly broad
and we cannot continue to use a linear relation between
R and E. However, from Egs. (11), (27), and (32)

E
R—R= / U(E)AE —mEU(E,)
E

T (-5 @

If E is near E, U(E’) can be approximated by
UdE)=U(E)E/E)e,

4mE
MI

where _
c=1—(IndmE/ M),

As was pointed out previously, this type of approxima-
tion is quite good if AmE/MI is large compared with
unity and E’ is near E. In particular, if dmE /M1 100,
we can use Uy(E’) in the range 0.42E<E’'<2.3E and
be sure that the error made by using the approximate
U(E’) is less than 29,. Even when 4mE/M] =20, the
error is less than 29, in the interval 0.58 < E'<1.75E.
If the full width of F(E,S) at half-maximum is less than
0.6E, we will usually be able to relate R and E by

R-E=UEEQ+o)[(E/E)+—1].  (41)

With 50-MeV protons incident on Be, Eq. (36) can
be used until H (R,S) becomes Gaussian. In fact,
Eg. (36) is valid until £ is reduced by more than 50%.
At larger S, we note that Py(S) approaches a constant
value, and H(R,S) is a Gaussian with the width
(2P,)!*=47.1 mg/cm? In the U(E’) given by Eq. (25)
is still valid at large S (and small E),

F(E,S)=U(E)(E E)<(2rPs)-12

Xesp{ ~[R(E)—ET/2P,}, (42)
where R(E)—R is given by Eq. (41). Figure 4 is a graph
of Eq. (42) for the case E=8 MeV or r=0.16. The
reader may also be interested in using Whaling’s"

range-energy tables in order to relate E to R. In this
approach, we write

F(E,S)=U(E)(2rP2)"1"? exp[ — (R—R)?/2P;], (43

and use R =96.7 mg/cm?®. R can be related to E by use
of the range tables. U(E) is obtained by the numerical
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evaluation of dR. dE in terms of differences from the
tables. For example,

R(8.5 MeV)—R(7.5 MeV)

U(8 MeV)=
8.5 MeV'—7.5 MeV

=20.5 mg/MeV cm?.

Equation (43) and Whaling’s tables lead to values of
F(E,S) which are quite close to those obtained from
Eq. (42). The use of empirical range-energy tables is
particularly useful in cases where the theoretical U(E)
becomes incorrect at small E.

In the preceding calculations, we have assumed the
strict validity of U'(E), M:(E), and M4(E) as given by
Eq. (23). Actually, the M»(E) given by Eq. (25) is too
small because of the neglect of inner shell correctiops.
This results in our Ps(S) being too small by 2-39%,. We
base this estimate on calculations by Sternheimer.!4
U(E'), as calculated from Eq. (25), differs from what
would be estimated from Whaling’s range-energy tables
by 5-15% in the interval 2< E’<10 MeV.

At large S, statistical fluctuations become un-
important. If further statistical fluctuations can be
neglected after a thickness Sy, a particle with energy in
the interval E to E4dE will end up with a range in the
interval Si+R(E) to S1+R(E+dE). Let G(p,Eo)dp be
the fraction of particles with initial energy E, which
have a range between p and p+dp. Choose E and dE so
that p=51+R(E) and dp=R(E+dE)—R(E). Then

G(p)EO)dP = F(Eysl)dE
=H(R(E),S\)dp,

G(p,Eo) =H(p—51,51).

or

It has been assumed that Sy is large enough so that P,
and P; have reached their limiting values. We then see
that the limiting values of P, and P; should be identical
to the corresponding central moments of the range
distribution function. The reader may have already
noticed that Eq. (29) reduces to the well-known
expression for the second central moment of G(p,Eo)
when P,(0)=0, E(0)=E,, and E(5)=0.

B. Energy Straggling of 5.3-MeV « Particles in Air

In this situation, H(R,S) becomes Gaussian by the
time the mean energy is reduced by 3%, This prediction
is based on Eq. (25), but there is probably considerable
similarity between the correct and approximate
M.(E)’s. Hence, we will proceed on the assumption
that H(R,S) is Gaussian for EX5.0 MeV. We also
expect that Eq. (36) will remain valid until the mean
energy is lowered considerably. Equations (39a) and
(39b) can be used until Eq. (36) fails.

14 R. M. Sternheimer, Phys. Rev. 117, 485 (1960).

~50 -40 -30 -20 -0 O 0 2.0 30 40 50
(R-R) (mg/cm?@)
Fic. 3. H(R,S) and Hg(R,S) versus R—R for 50-MeV protons
in Be. H4(R,S), the Gaussian approximation to H(R,S), is given
by the dashed line. The mean energy has been reduced to 45 MeV.

This situation has been studied experimentally by
Rotondi and Geiger.!’ They find that #(E,S) becomes
Gaussian as expected. Since a Gaussian is completely
specified by (E) and 4,(S), we will not compare every
detail of the theoretical and experimental F(E,S)’s.
Instead, it is sufficient to calculate a={24:(S)7]*/? and
compare it with the experimental values.

In this situation, inner shell corrections are impor-
tant; therefore the M ,.(E)’s given by Eq. (25) cannot be
used. Livingston and Bethe!¢ have used the first-order
Born approximation to derive an expression for M(E)
which includes inner shell corrections. They find

VA kalnZo 2mV?
AMQ(E) =M23[—'+Z ln ] y (44)
Z " ZImV? I,

where Mg is the M,(E) as calculated from Eq. (25),
Z, is the number of electrons in the nth shell, I, is the
effective ionization potential of the nth shell, %, is a
constant which will be taken as # for all shells, V is the
speed of the incident particle, the sum extends over all

- T v T v T v * v v T
F(E,S}
241

20}

oaf .

.ool A A " i A A A i A A
o] | 2 3 4 5 6 7 8 9 10 1
E(Mev)

F1c. 4. Energy distribution function for 50-MeV protons in Be,
The mean energy has been reduced to 8 MeV.

15 E. Rotondi and K. W. Geiger, Nucl. Instr. Methods 40, 192
(1966).
( 18 M. S. Livingston and H. A. Bethe, Rev. Mod. Phys. 9, 261
1937). :
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TaBLE IL Results of theory and experiment for the energy
straggling of 5.3-MeV « particles in air at 760-mm Hg and 15°C.
E, S, and the experimental values of a were taken from Rotondi
and Geiger (Ref. 15). The values of U/ (E) were extracted from
the E-versus-S data of Rotondi and Geiger (Ref. 15) and from
the range-energy tables of Whaling (Ref. 11) (the latter values
are marked with an asterisk). U,(E)= 1.075(E£/5.3)°5" cm/MeV,
with £ in MeV.

S E U.(B) U(E) Py(S) a (keV)
(cm) (MeV) (cm/MeV) (cm/ MeV) (cm?)  Expt. Theory
0.000 5.300 1.075 1.075 0.000 13 0
5.000 1.04 1.05*
0.833 4.500 0.98 1.01,0.99*  0.00046 32 310
4.000 092 ° 091*
1.388  3.930 0.91 0.97 0.00071 43 414
3.500 0.85 0.84*
1943 3.280 0.82 0.833 0.000933 54 31.9
2.554  2.450 0.69 0.690 0.00112 70 68.6
2998 1.705 0.56 0.556 0.00122 92 890
3.276  1.140 0.44 0.445 0.00126 109 113.0
3.526  0.545 0.30 0.40 0.00128 122 127
3.390 0.385 0.44 0.00128 115 115
3.640 0.275 0.484 0.00128 105 105
3664 0.225 0.528 0.00128 94 955

shells for which 7,<2mV? and Z’ is the effective num-
ber of participating electrons as defined by Livingston
and Bethe. We will use Eq. (44) in calculating M.(E)
for air.

We first consider M(E) for pure nitrogen. We use!*17
1,=495 eV, Z1=2, I,=57 eV, Z,=2, I;=38 ¢V, and
Z3=3. We find that M, is 1.35M .5 at E=5.3 MeV, but
it increases to 1.46M3p by the time E is decreased to
3.0 MeV. For pure oxygen /;=710€V, Z, =2, [,=68 eV,
Zy=2, I;=49 eV, and Z;=4. It is found that M, is
1.35M:5 at E=5.3 MeV, but increases to 1.41M 25 by
the time E is reduced to 3.0 MeV. By the time E is
reduced to 3.0 MeV, P, grows to about 759, of its
limiting value. The heavy contribution to P, from E

-~ near E(0) suggests that we can replace M,(E) for air

by a constant value 1.38 times as large as that calculated
from Eq. (25). This approximation should lead to values
which are within 39 of what would be obtained if we
included the E dependence of M,(E). If the air is at a
pressure of 760-mm Hg and a temperature of 15°C,
we have
M3(E)=264 keV?’cm, (43)
U(E) cannot be calculated from Eq. (25), but when
E>1.1 MeV, we can use
U(E)=1.075X107*(E/5300)**" cm/keV,  (46)
where E is in keV. Equation (46) is an empirical relation
which reproduces range-energv data fairly accurately
in the interval 1.1 E<35.3 MeV. Table II includes
both values of U(E) calculated from Eq. (46) and values

¥ R. M. Sternheimer, Phys. Rev. 88, 851 (1952).
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determined from the experimental data of Rotondi and
Geiger. When E<1.7 MeV, U(E) will be taken from
experimental data,

From Egs. (29), (45), and (46)

Py(85)=1.28X10"[1—r>"1] cm?, 47
where r=E/E,, and we have taken Py(0) =0. Actually,
P»(0) is not zero in the Rotondi-Geiger experiment, but
it is small and can be neglected at intermediate and
large absorber thicknesses. Equation (39b) and (47)
can be combined to calculate a=[21,(5)]"2. The
calculated a is compared with experiment in Table II.

The reader may wonder about the continued use of
the theory for E<1.7 MeV'. After all, the present theory
neglects electron capture and loss, and these effects are
important for E<1.7 MeV. However, the solid-state
detector used by Rotondi and Geiger detects the
particles and classifies them according to their energy,
without regard for their charge state at the instant
they enter the detector. Also, F(E,S) may be broad
enough by the time electron capture and loss becomes
important so that nonstatistical changes will dominate
changes in the energy spectrum due to statistical
fluctuations of any kind. In this event, each particle can
be treated as if it loses energy at a definite rate. This
rate of energy loss is the weighted mean of the average
rates of energy loss for the different charge states, the
weight factors being the fractions of the distance
traveled while in each charge state. If we determine
M,(E) from the experimental data and interpret
F(E,S)dE as the fraction of the particles (without
regard for charge) with energy between E and E+dE,
the theory could continue to hold at average energies
below 1. MeV. This is observed to be the case.

The excellent agreement between theory and experi-
ment for E<1.7 MeV may involve some luck. We say
this because when E<1.7 MeV we use a=(2P,)!/2/
Ux(E). It is difficult to believe that U2(E), the value
for U(E) extracted from the Rotondi-Geiger E-versus-S
data, is as accurate as the theoretical values of a seem
to be. N

Comfort, Decker, Lynck, Scully, and Quinton® have
studied the energy straggling of a particles (E,=8.78
MeV) in various metal foils. They compare the mea-
sured full widths at half-maximum (FWHM) with the
Bohr theory. Even though several different forms of
M,(E) are used, they find that the calculated FWHM is
always much smaller than the experimentally deter-
mined value at Jarge S. We have found that the same
tvpe of theory used here for air gives good agreement
with experiment® in the case of nickel foils. It is also
found that the experimental results for thin aluminum
foils can be calculated fairly accurately if one assumes
that each individual foil has a Gaussian distribution of
thicknesses with a standard deviation of 0.12 times the
average thickness. The inclusion of nonstatistical
spreading of the energy spectrum (and multiple scat-
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tering) may also bring the theoretical calculations for
the other tyvpes of foils into much better agreement
with experiment.

V. CONCLUDING REMARKS

At the time the preceding pages were written there
was no alternative theory at large path lengths. How-
ever, Tschaliir'® has recently extended the calculation
of F(E,S) into the thick absorber region. This was
achieved by carryving out the numerical solution of a
simplified form of Eq. (1). In these calculations Tschalir
uses a P(E,t) which leads to the M,(E) and M,(E) given
by Eq. (23). Hence, these calculations neglect both
inner shell corrections and relativistic effects. We will
now compare the results derived in the present paper
to those of Tschalir. ’

Tschalir has considered 49-MeV protons incident on
an aluminum absorber. In particular, he works out the
case where the absorber thickness is such that the peak
of F(E,S)is at E=5MeV. It is found that the calculated
spectrum is in good agreement with the experimental
results of Raju'® for E>2 MeV. To calculate this spec-
trum from the present theory, note that v is small so
that H(R,S) is almost Gaussian. We can use Egs. (41)
and (42) in calculating F(E,S). However, before using
these equations we must determine E. If we let

U(E)=U(En)(E/En)¢,
with d=1—(InV,)"'and V,.=4mE,/MI, we can show
that
E E.=[1-Q2m/M)(d)(d+1)(Ba+1)"!
X (1 _a)a(l _d)—z(Eo//E-)CJl/(dﬁ-l) .

With En=5 MeV, M/m=1840, E,=49 MeV, I =163
eV, a=0.846, and d=0.762, we find E=4.26 MeV. At
large S (or small »),

Y g
P.[ U =—t— ]| — .

M\E 1—d/ 1+43a
18 C. Tschalidr, Nucl. Instr. Methods 64, 237 (1968).

¥ M. R. Raju, University of California Lawrence Radiation
Laboratory Report No. UCRL.-16613, 1963 (unpublished).
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Fic. 3. Energy distribution function for 49-MeV protons in Al
The most probable energy has been reduced to 5 MeV.

If we use the last relation, Eq. (42) becomes

F(E,S)=0.167(E/4.26)°-75
Xexp{ —0.514[(E/4.26)"- 72 -1},

where E is in MeV. The F(E,S) calculated from the last
equation is graphed in Fig. 5. The F(E,S) calculated
here is in excellent agreement with the data of Raju
and the calculation of Tschalidr. We have compared the
present theory with that of Tschalir for cases where the
heavy charged particles were pions and helium ions. In
every case that was considered the agreement between
these calculations was excellent. This work achieves to
a great extent analvtically what Tschalir has done
numerically.

The theory that has been developed here is not
restricted to cases where the M ,(E) given by Eq. (25)
are accurate. This is important since inner shell correc-
tions to M,(E) are important in many situations of
interest. Sternheimer'* has estimated that these cor-
rections are about 169, for 10-MeV protons in alu-
minum. These corrections are larger at lower energies
and are about 69, even at E=50 MeV. At a given
energy, these corrections are even more important
for « particles.
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