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j The theory of energ}. straggling attempts to calculate F(E,S), where F(E,S)dli is the fraction of the heavy
i charged particles which have an energy bet\veen II: and I:'+dl:: after a path length S has been traversed in
1 absorbing medium. This paper develops a method of calculating FIE,sJ for path lengths large enough so
~ that F(/::,S) is alm~t Ga~ssian. The m~thod rema!ns vali~ until a large fr~ction of the l!articles run o~t of

energy. The theory 1S applied to calculations of F(E,S) for ;,O-MeV protons m Be and for ;'.3-MeV a part1cles
in air. The calculations for a particles in air are in good agreement \vith the experimental results of Rotondi
and Gieger. The theo~. is also in agreement with numberical calculations by Tschalar.

I. INTRODUCTION B. Intermediate Absorber Thicknesses
. WE consider a parallel beam of heav~' charged par- At smallS, the energ~. spectrum is strongly skewed,

ticles incident on a plane la~'er of homogeneous with a long tail toward lower energies. As 5 is increased,
absorber. "-e \\'ill calculate the function F(E,s), where the ske\\"Dess becomes smaller and F(E,5) approaches ;"~ \~:¥:::
F(E,5)dE is the fraction of the particles with energy a Gaussian.1.2.4 If an absorber is thick enough so "'jf~ "C;~1,
between E and E+dE after a path length 5 has been that F(E,5) is almost Gaussian, but thin enough SQ~.':f~~i'
traversed in the absorbing medium. In calculating that the full width at half-maximum is small compared .. !t

F(E,5), electron capture will be neglected. with the mean energ~', we say that its thickness is
It can be shown that intermediate.

" '".,
i of(E,s) ~ The pa.rt of S~~on's. work4 which deals wit? ab- ':'

: = - ( P(E,t)F(E,s)dl sorb~rs of Intermediat~ thickness has not been pubhshe~. _.~.
05 J 0 Judgmg from the continued use1,5-7 of the more apprOXl- ",..,1~

) mate Bohr theor\.8 in this region, it seems that manyPEt t F E t 5 dt 1 " .+ 0 (+, ( +, ) , () workers are not aware that S~"II1on's theor~' IS much

. . . more complete than that of Bohr. For this reason we
"\\"here P(E,/!dtd5. 15 the proba~lht~. that a heavy will now outline the S~"II1on approximation.
charged. partlc~e Wlth energ~' F: "'ill los~ an am~unt of S\"II1on makes use of the fact that a statistical distri- I

energ\" m the mterval/-t+dt m traversIng a thickness ;. . Jo""f b "
b d " AI t 11 . k h b b d butlon function can be calculated from ItS central Xl0 a sor er oJ. mos a preVious wor. as een ase 9... " . : ..

on Eq. (1).1 We begin b~. discussing the earlier work on moments.. In particular, If the dis~nbutlon function
energ~' straggling. In all of these theories it is assumed does not differ greatl~- from a Gaussian, then onl~' the
that the initial beam is monoenergetic. first few central moments need be known. (The actual

construction of a distribution function from its central
A. Thin Absorber Approximation moments \\.ill be discussed at a later point in the

"avilov2 has solved the ener~. straggling problem for present stud~'.)
absorbers which are so thin that one can replace P(E,t) The equations to be derived in this section are due
"and P(E+t,t) in Eq. (1) b~" P(Eo,/), \\'here Eo is the to S)"D10n, but we \\'ill also use them in order to discuss "
initial energy. Once this approximation is made, one the Bohr theor~'. We define the central moments .-1 n(5) ,
can easil~' ~olve for the Laplace transform of F(E,5). by.. The numerical evaluation of the inverse transform - x

yields the approximate F(E,5). ,-1,,(5)= r [E-(E)JnF(E,5)dE, - (2)
"'hen relativistic corrections are small, the' 'avilov ./0

, approximation begins to fail for reductions in average where, energ~. greater than 10%. In the case of protons or (X
~ Q. parti~les, F(E!5) ?ecomes alm?st Gaussian b~' the (E) = J 0 EF(E,5)dE. (3)

time this approximation become5 Inaccurate. 0
The \'avilov theor~-, the bt5t theor~' for thin ab- 6 J. R. Comfort. J. F. Decker. E. T. Lynck, :\1. O. Scully, and

sorbers, replaces more approximate theories b~' Landau3 A'6R. Quinton. Phys. Rev. 1.50, 249 (1966).. -
and b -S 4 D. L. Mason. R. M, Prior, and A. R. Qumton, Nucl. Instr.t: - ~ ~"II1on. Methods 45, 41 (1966),

'. 1 U. Fano, Ann. Rev. Nucl. Sci. 13, 1 (1963). 7 E. Segre. ."iu:lei ~nd P~rticles: AI! I,:,troduction ~o NzU;lear .
, I P. V. Vavilov, Zh. Eksperim. i Teor. Fiz. 32, 920 (1957) and Subnu<lear PhYSlCS (\\. A. Ben)affiln, Inc., i\e\v \ork,
..'[English transl.: Soviet Phys.-JETP 5,749 0957)J, 196,~).

" a L. Landau, J. Phys. USSR 8, 201 11944). & i\. Bohr, Phil. ~fa!(. 30, 581 (1915).
I " -' 4 K. R. Symon, Ph.D. thesis, Harvard l"niversity, 1948 (un- 8 H. Cramer. ,1/ afhematical Methods /I.r Statistics (Princeton

- published), University Press. Princeton, i\. J., 1946).
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On differentiating Eq. (2) we find Symon allows for deviations from a Gaussian fomi:".,:
, , He also derives the .-1 ,,'s in a better approximation. WeJ dA" d(E) 1" [ J af (E,S)dE will now derive .4 2(5) in Symon's approximation. In1\ -=-n--1 1+ E-(E) n .: dS dS . ,,- 0 as' evaluating the integrals on the right-hand side of

Eqs. (6) and (i) we use
t'i If we use Eq. (1), we find that

dM1
d.4n d(E) " n~(-1)L 1~ M1(E)==.J;[I(,El)+-«E»(E-(E»

t -=-n-.-1.-1+L i\1L(E) dE
,; dS dS L-I (n-L)! 0 and
, dM2

X(E-(E»n-LF(E,S)dE, (4) .if 2(E) == "\1 2«E) )+-«E»(E-(E».
where dE

1 1~ We obtain
M L(E) =- P(E,/)/Ld/. (5)

L: 0 -- d(E). -=-,if1«E»),

Further details concerning the derivation of Eq. (4) dS
may be found in S)mon's thesis. dA dM

Equation. (4) p~ovides a. good starting point for -==-2~«E»A2+2M2«E».
understandmg all mtermedlate path length theorIes. d5 dE
We first consider the Bohr theory which argues from the
central limit theorem9 that F(E,5) will become
Gaussian. Once F(E,S) reaches the Gaussian limit,

F(E,S) = [211"A2(5)]-1/2 exp[ -(E-(E»2!2A2(S)J. [ ,if1«E» J2 .-12(5) =
Note that only (E) and .-12(5) are needed to determine M 1( (E)o)
F(E,s). Bohr argues that the Gaussian limit will be

, reached while the full width at half-maximum is still
{ f ( £,o.if 2(E)[ ."f 1«E)0) J2

}very small compared with the mean energy. Wnen n = 1, X A2(0)+2 -M (E)M (E) dE.
Eq. (4) yields IE) 1 1

d(E> ~ In the cas~ of no?relativisti~ protons or a particles,
0= --- r .if1(E)F(E,S)dE, (6) ~q. (9) begms to differ a.ppreclably from Eq. (8) by the~i;

dS } 0 tIme the mean ener~" IS reduced by 200/0. Once the'i~
mean energy is reduced by 500/0, Eq. (9) yields an A2 :~~{,

where we have used which is larger by more than a factor of 2. 11

Ao(S)=l, A1(S)=0. To understa?d t?e difference between ~he Bohr and..~
. Symon approximatIons, note that M 1 (E) IS the average

When n =2, Eq, (4) ~.elds rate of energ~"loss b:,' particles with energy E. \\'hen we
~ replace the .if 1(E) b:-- .\1 1( (E», we ~ssu~e that the ,;~
~'" average rate of energy loss by all particles IS the same. ,~
I When Symon includes a linear variation of j,[ 1(E), he '1i

. includes that fact that the width of /"(E,5) changes not
f.o: only. becau~e of .statistical flu:tuations but also ~ecause
:' particles wIth dIfferent energies lose energy at different

The Bohr approximation assumes that F(E,5) is so average rates, "'e shall eventuall:-- show that the non-
sharply peaked about E = (E) that M 1(E) and M 2(E) statistical t:,"pe of change in F(E,.')) completely domi-
are essentially constant over the region where one ob- nates its evaluation at large 5.

'; tains a contribution to the integrals in Eqs. (6) and (i).
'.~ Consequently, C. Thick Absorbers.-
" d(E) d ,42 Once 5 is made so large that it is not correct to

--= -"W 1«E», -=2M2«Ei), assume that the full "idth of F(E,S) at half-maximum
, d,,> d5 is small compared with (E), we sav that the absorber is

~ ;. ,/ :}~ and- Eo M 2(E)dE thick. In this region the S)'nIon approximation becomes

t f"'." A 2(5) = 2 fE)~ "(E) , (8) PO~~e might think that Eq. (4) could be used in this ,;~

t: . region. However, the M n(E) vary so much over the
f' -~'" where Eo is the initial ener~". If we use the classical region where F(E,5) is nonzero that the integral in

expression for P(E,/), we obtain Bohr's original result, Eq. (4) cannot be expressed in terms of a reasonable
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1 .)1a(' .lberof -1 n'S. None of the previous theories holds in To see that Eq. (10) may become valid for thickJausslan nlln .Lppro.I.mt.h'. re,rion, absorbers we let

x a Ion t I~ " .. h11app.. . "ThePurpose of this paper IS to s ow how to ca cu aterOXlmatlonh'd.dh.kbbP(E)K'E" .ft< <.ight-hand sid f(I~,S) throughout t e mterme late an t IC a sor er ,t = ! to, I min~t=tmaxregions. =0, otherwIse. (11) ~II. QUALITATIVE DISCUSSION OF Now, K=7r.VZz2e4M/m, .,. is the number of absorber)(E-(E» THICK ABSORBER LIMIT atoms per unit volume, Z is the number of electrons, per atom, z is the number of electronic charges of\t l",rge path lengths, where ..).-12 IS large comparedth. .dt. '1.hIthII '. " "bl1. '1e mcI en partlc e, e IS tee ec ron c arge, "Y.L IS, h the m"'Xlmum pOSSI e enerrrv oss m anv sIng e ' , , ,(E-(E». I\Lt" "h11'" . (11, "'E(1),b" the mass of an incIdent partIcle, m IS the electron.olllslon, t e co Islon mte"ra m q, can e ex-t - (4 /M)E t . _ / 2/td/'thl mass, max- m , mln - max, an IS e meanp",nded as excitation potential of the absorber molecules as defined"~ by Fano,l This form of P(E,t) neglects relativistic ;jr [P(E+t /)F(E+t S) -P(E t)F(E S)]dt effects and inner shell correctionsi;", n ' , " .-. If we substitute the approximate P(E,t) into Eq. (5), ",,0 ~ !I/o .'fidu . we n c= L -[Mk(E)F(E,S)], M1(E) = (2K/E) In (4mE/MI) "£,(E». k-1 aEk andby a generalization of the Fokker-Planck expansion, If M 2(E) = (2m/ M)K.multaneou p(E t) were analytic, one could arrive at the expansion ,?1".T1'fP(E+tt)F(E+tS)In evaluatIng M 2(E) we have assumed that tmax»tmin.bY sImp \ usIng a ay or series or , ,.Th1d,.,fh.ffP(E), 'h.fi"t .dle atter con Itlon IS necessary or t IS orm 0 ,tIn ",nv c",se, t em m e sum converges very rapl yonce . ." . . "f"11"dththIf"fF(ES)bto be accurate. To slmplu\ the mathematIcs we approXl-the u WI a a -maxImum 0 ,ecomesf11"Ihh" "bl1. mate as 0 ows:much arger t an t e maxImum pOSSI e energy oss In2 an). si~gle collision by a particle with the mean energy. 2K(E)O)G(4m(E)0)~]dE}, Efjuatlon (1) becomes "\l1(E)=- - In , :'rJE) (E)o E MI ,;taF(E,s) ~ a/o wheret., s or a pa -;;s-= EIW[Mk(E)F(E,S)]. a=l-[ln(-!m(E)o/MI)jl..;m Eq. (8) . ..')(\010 ' . ." If -!m(E)o M / = 20, the approxImate M I(E) represents" --10. n In the case of a partIcles or protons at nonrelatIvlsticth..1ft. "thallth-01f"(9).' Id '. . . e orlgIna unc Ion WI an error sm er an.) 10 or..
)Ie s energIes, the energy spectrum becomes essentIally 0 ~(E)<E<1~(E)Th.tM(E).ood',~)f 2 'h'h.ddb.., 0- -.., o. e apprOXIma ellS g. GausSIan bv t e tIme t e mean energy IS re uce yh-f- .htf11'"0 theBh-.1G. .1henoug or use m w a 0 ows.'" 0 10%, The spe.ctrum remaIns near y aUSSIan .un~I . t. e If .-12(0) =0, E . (9) becomes .f!;) IS the a mean energy IS reduced to less than 35% of Its InItIal q -,~~"E"Wh value. Hence, to a good approximation only A2(S) EoM2(E) M1«E» 2 ~;~lssurt.te tha and (E) are required for the calculation of ,F(E,S). J 2(S) = 2 r -()dE, .

cles IS the S)'mon's expressions for (E) and .-12(S) are still valid J (E) M I(E) M I(E)on of M 1( ; when the spectrum becomes nearly Gaussian. Hence,~,S) change one would obtain the same values for (E) and .42(S) where Eo is the initial energy. We findbut also be - if M 3(E), .\f 4(E), etc" were all set equal to zero. Thise~gy at differe~.: suggests that the Fokker-Planck equation , 2m ,,[ (-!mEo)] -1 !\\ that the non.;;~~; .-12(.S) =-Eo' (3a+ 1) In -'Jmpletely domi-""': aF(E,S) a a2 j! M Ij,: -=-[M1(E)F(E,s)]+-[M2(E)F(E,S)] ,
,,;1. as dE aE2 (Ml(E»)2[(E»)3"+IJis valid for proton or a particles once the mean energy X M:(EY 1- & .has been reduced by more than 10%. In the case oflighter particles, (E) must be reduced somewhat farther Consider S)'mon's equation for A2:before this equation becomes valid"We will now investigate the possibility that even the dA2- dM1«E»()second term will eventually become unimportant, so -;;s- -2-~A2+2M2( E) .

that
~~~=~[Ml(E)F(E,S)]. (10) We will now deter~in~ how much (E) must be ~educed

as aE before the nonstatIstIcal term becomes ten times as
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large as the statistical term. \\.c have The mean range, as measured along the actual path of
",;; the particle, is given approximately b~. Eq. (13).10

2M 2( (E») 1 Because of the close relation between R(E) and the
? ' ~ - , mean range of a particle with energy E, we can make

~ or _jdM 1(E»/d(E) 1.42 10 use of tabl:s.prepared by \\'halingI1 in relating Rand E.

" The validity of Eq. (10) at large 5 suggests that we
(E) [ 1-[ln(4m(E)!MI)]-1 JI/4 should let -:$ I H(R,S) =MI(E)F(E,S). (14)

I Eo- 20-15[ln(4mEoi'MI)]-' .
I Once Eq. (10) becomes valid, H(R,S) becomes equal
, ~

[ In(olm(E)kJ I) J3/4[ ( E»)30+1Jl.'4 to G(R+S). Hence, at large pat? lengths H(R,S) tak~s
X 1- - . on a constant shape and width. In Sec. III, we will r

In(4mEo'M I) Eo develop a method that allows us to calculate H(R,S) =~
until Eq. (10) becomes accurate, and hence determines (3-rJI

If 4mEo/MI=50, one finds (/:iMO.J.i/,'". \\'hen 41//1,',.,,' it for arbitraril)'large S.

M/> 50, it is found that (E) does nvt have to be reduced
quite so far. \"e will now check to see if S~.mon's equa- III. CALCULATION OF H(R,S) "
tion is still valid at this point. Let 4mEo/ M 1=50 and \\ ' .t '- - e can wrl e
(E)=0.3:,Eo. Then (.42)1/2/(E)=2.:'(miM)1/2. S~.mon's 1 ~
equation is still valid for protons or a particles. How- H(R,s) =- r e-iPRg(P S)dP (15)
ever, it is questionable for pions and muons. We then 271" J -~ "

see that in man, cases of interest A 2(5) starts to evolve where
, ~

according to d.42 dMI(E»).42 g(P,S) = 1 eiPRH(R,S)dR. (16)

~=-2 0
dS d(E) \\.e express g(P,s) as ')

j by the time (E) is reduced to 35% of its initial value. (P,s) - . [ i: KL(S)(iP)L
J (17) Ai(~j Hen~e, at larger p~th lengths n°.nstatistical changes g -exp L-O L!'I " dominate the evolution of A2(S). We can show that the

I ~ same is true of A 3 and A 4. At larger 5, we get the same where the KL's are the well-known cumulants of the If H(R,s) de
evolution for the central moments if we set M 2(E), distribution. 12 rrns are req\J

:' M 3(E), etc., all equal to zero. Thus, at larger 5, Eq. (10) We define the central moments of H(R,S) b, ,avilov the.ory
.. is valid. ' rm numerIcal
:~ It is reasonable that Eq. (10) will also become valid r~ - ; We can also ~
~:~ ~t large 5 i? man~' cas:s w~ere the sim.ple PCB,!) used P n(S) = J 0 (R-R)"H(R,S)dR, (18) es an Edge~
:8 m the preVIous discussion IS not sufficiently accurate. where 0 ~ccurate as ,
i '" All that is required for the validity of Eq. (10) is that ~ es. Symon4, ~'.F(E,s) should eve.ntually becom~ broad enoug.h so that R(S) = r RH(R,S)dR. (19) .' F(~,s!, ~

! .; Its rate of change In shape and width due to dIfferences J 0 ge dlstnbutJ
'r; in average rate of energy loss should dominate the rate t th I f H R 5, .;We have see ' ,. f h . h d .d h d . . 1f] 0 e cumu ants 0 ( ) as I t . : 0 c ange In s ape an WI t ue to statlstlca uctua- , cumu an s, .

( tions. We will now investigate the possibility of taking '. m the centn

;. advanta~eofthevalidit~..ofEq.(10)atlargeS. Ko(S)=O, KI(S)=R(S), ,ntral.momen,'" Equatl?n. (10), can be solved b~' the method of K2(S) =P2(S) , K3(S) =P3(S) On different!.

characterIstics. \"e find ,

;:;~ K4(S)=P4(S)-3(P2(S)2, etc. ~
~ F(E,s)=G(R(E)+S) MI(E) , (12) A . d. .. . ~ ( f d~ f Gaussian Istnbutlon function has Kn 5) =0 or ~

J' where G is an arbitrar,. function and 11 > 2. If the distribution function is close to Gaussian,, ' one finds that the infinite sum in Eq. (15) converges

'1+'
l E d[' rapidl~.. and only a few terms are needed to represent

j" R(E) = - . (13) g(P ,5) properly. In the case of nonrelativistic protons ~
~, 0 MI([') or helium ions whose mean energ~. has been reduced by -
~ more than 3% onl, terms through 11 = 3 need be rc-4 '~. R(E) is the total distance that a particle with initial .

~",. energy E would travel before coming to rest if it lost :~ U; Fa,no, ,Phy~, Rev, 92,328 (1953). .. ]')' c

i : energ'. at a continuous rate given exactl,. by ~. Whaling, In l!andbuch der PhYSIk, edited by S. . u~~I s - - (Spnnger-Verlag, Berlin, 1958), Vol. 34, p. 193.
' ;~ 12 M. G. Kendall and A. H. Stuart, The Advanced Theory 01

~ ;:: dE/dS=-MI(E). Sialislics (HafnerPublishingCo.,Inc,,:.."ew ¥ork. 1963" 'is,

i

~
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,e actual pat tained. Once the mean energ)' of the protons or helium Thus, Eq. (21) becomes
Eq. (13).10 ions has been reduced by 10%, only terms through -

en R(E) and :==2 need be retained. dPn(S) dR
E, ~'e can II If term.s through n=3 are su~cient, one can inv~rt ~=-ndSPn-l(S)

elatIng R an the FourIer transform exactly m terms of the AIry 1x aF(E,s) -
suggests tha " function. H(R,S) becomes + [R(E)-R]ndE, (22)

,,:!'ii'\., 0 a.S'
,~""

. (14}:i}~j
H(R .5') =~ r~ exp[ -iP(R-R) Equation (1) gives

) becomes eq~f7)~£'!;" '211" J 0
.;ths H(R,S) takes -!iP3(S)P3_!P:!(.5)P2]dP 1x aF(E,.5) -
';;ec III W ill [R(E)-R]ndE. , e \V "A '

( ) asalculate H(R e I W 0
,s) =, (20)lence de term. (3'rJI/3(2P2)1/2 1~ 1~ '

= [P(E+/,t)F(E+t ,S) - P(E,/)F(E,s)]
where 0 0 -

.CR,S) -y+(48"YJ-l X[R(E) -R]nd/dE.
W = ,Let '!1

( L' I) 1/3 --"' r~
"1.,- ".,)dP, _-y+(72"YJ-~' -.' J2= l~l~p(E+',/)F(E+t,S)[R(E)-R]nd'dE, ~~

v-, 0 0 .1' '"
12'" "", 1 ,

R. y=(R-R)/[2P2(S)]1/2 J1= l~F(E,S)Mo(E)[R(E)-R]ndE. :'~~

"YI= -P3(S)/{3![2P2(S) ] 3/2) ,"d ., , Then
~Ln ~ aF

(E,s)L 1 r~ r-
~], Ai(w)=;Jo cos(!t3+wt)d/, J2-J1= Jo --as-[R(E)-R]ndE.

, . If J2-J1 can be expressed in terms of the Pn(S)'s,
Imulants of If H(R,s) devIates so far from a GaussIan that more E (22) "11 b t f . ult d' ff ' al. . q. WI ecome a se 0 slm aneous I erentl

terms are requIred, one may, as m the case of the t . f h.
h th t al b t o':

. . '. e ua lons rom w lC ese cen r moments can e ;.(R,s) bv 'avuov theory, be forced to invert the Founer trans- qal I t d'. f . all c cu a e . ,arm numenc y,
I al . J . h d f . . '~'-

" . I H(R S) ' h f f G . n ev uatmg 2, we mterc ange or ers 0 mtegratlon,'

e can a so express, m t e orm 0 a ausslan d I t E '- E+t J b'dR . Ed h . 12 U all E (20) ' al an e - . 2 ecomes, tImes an gewort senes. su y, q. IS most c';;,"!;
as accurate as a Gaussian times a six-term Edgeworth 1~ f ~ 'f:;,'
series. Symon. has used the Edgeworth series to calcu- J2= dt P(E',/)F(E',s)[R(E'-t)-R]ndE' -"~,
late F(E,s), and Lewisl3 has used it to calculate the 0' ,"' ::~

range distribution function for heavy charged particles. ~ ~ ".
lS of H(R,s , ".e have seen that H(R,S) can be determined from = r d/ r P(E',/)F(E',S)[R(E'-/)-R]ndE', 'c,;!i

Its cumulants, and that the cumulants can be calculated J 0 J 0~;;" , from the central moments. We will now show how the
,,') =R(S) , ~:' ';it~ central,mome~ts .can be calculated. . where we.have as.sumed that F(O,S) =0. Interchanging

" ) - p ( ) ;3;" :ii,fr' On dIfferentIatIng Eq, (18) one obtaIns orders of IntegratIon,- 3 S, 'c :Ut",~,.. ( - 00 x, ,."" dP" S) dR , " , - ,
'i:*':, --= -n-P"-I(S) J2= r f(E ,S) r P(E ,t)[R(E -/)-R]nd/dE ,

;IS Kn(S)=O fo{~~' dS dS Jo Jo
lose to Gaussian, .1x aH(R,s) , -. . .

(1-) c' + [R-R
] ndR. (21) If [R(E -t)-R]n IS expanded m a Ta~-lor serIesI. .) converges"pcc

b 0' as a out/=,ded to represent~ -. 0 ,
I .. . ::" ~O\\,
i;ltlVlstlC proto~ aH(R,s) aF(E,s) ~ 100 ak -
been reduced b~~;'~~=Ml(E)-~-, J2= L (-I)k F(E',S)-;[R(E')-R]ndE'

I = 3 need be r ;; as a.S' k-O 0 aE k~.. d 1 '" P(E' t)tkd/ an ,
dR=(dR/dE)dE X 0 k!

. =dE/M1(E). ~ 1~ ak
= L (-I)k F(E' ,s)-[R(E') -R]nM JE')dE'. "!;

13 H. W, Lewis, Phys. Rev, 85, 20 (1952). k-f) 0 aE'k
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Subtracting J I, Then .

~ dR ~ iJk-1
J2-JI= L (-l)k -= i: (-1)k r H(R,.S')MA.(E(R)-l:(E(R)dR., k-1 ~ k dS k-1 Jo iJEk-1

, 1 iJ ~C FE'S - R E' -R nMk E' dE'. ... "
I X 0 ( ,) iJE'k[ () ] () In order to see what apprOXImatIons ~re plausIble, .we f In the appr

! use the P(E,/) from Sec. II. Then M" s correspondmg ' Now Equation (22) becomes to this P(E,/) are.

,\ dPn(S) dR ~ M1(E)=(2K E) In(4ME MI), ',;;: To improve

+1I-Pn-I(.S')=L(-1)k ~ -
dS dS' k-1 K(4m M),,-IEn-2 '; dR

! ~ iJk M"(E)=,, ifll>1. (25) "jS=-
I X r F(E',Sj.Y A,(E')--[R(E')-RJndE'. (23) n.(lt-l)

J 0 iJE'k We have me

- untWe woul~ like to approximate the right-hand sid~ of dB - ~ (-1)k(4mM)k-1 r~ k-2
Eq. (23) ill terms of the P. (S)'s. In order to achIeve - - -1 + L ,- J 0 H(R,S)E (R) iJl
this, we will first need to change variables. We use dS k-2 2(k -1)k. 0 »-
Eq. (13) in order to express E in terms of R and note iJk-1

[ E(R) Jthat X- dR.

F(E,S)dE=F(E,s)(dE'dR)dR iJEk-1 In[4mE(R)/A-fI]

=H(R,s)dR. ~ow,
Also, iJ iJR iJ iJ ( 4mj -1 ( 4mE)-I [ ( 4mE)-! J the j -E In- = In-- 1- In- , fill!

a"E=aEaR iJE MI MI .VI
.. iJ iJ2 ( 4mE)-1 ( 4mE)-2 [ ( 4mE

)-I J/! . =IT(E(R))-, -E In- = In- 1-2 In- E.

i iJR iJE2 MI MI MI ing,

where

U(E)=[M1(E)]-I. It is fairly evident that as k increases, each new term =R(
Consequentl}", is smaller than the previous one by a factor of the order

- of m/ M. Even in the case of muons one has as an
(2dP dR ~ 1 "

11 . . n ,
~+1t-Pn-I=L(-1)k H(R,S)Mk(E(R) exceentapprOXlmation: nsoJ
dS dS k-1 0 . dR/dS=-I. readt

. iJJk com
:, X[ .U(E(R»- (R-R)ndR. (24) To see ~h~t the last result is not strongly depend~nt on appa
~ iJR the vahdity of Eq. (25), let tm(E) be the maXImum 4m,

W will E (24) . d d . possible energv loss for a particle of energ)' E. Then corr~
e now use q. ill or er to enve expres-. I 1

sions for 0" P2(S), and P3(S). A study of these cases -_.e' M (E) ~ /1~ . nwill point out approximations which will be useful for n = n-1 r P(E,t)/nd/ P(E,t)tn-Idt

general n. M n-I(E) J 0 0 (-
11 =1. Using Po(S) = 1 and P1(S)=O, we have < -I

(E) -2 = II tm '.

~= i: (-1)k r~ h(R,S)J.,1 k(E(R» Thus, if the maximum possible energy loss is ver)" small
dS k-1 J 0 compared with E, we expect

[ iJ J k ,,'s~

X l"(E(R)- (R-R)dR.
I iJk-lll / iJk-2UI l iJk-JU / iJk-2lT I ones, iJR M A'- M A'-I- ~ -t".(E) k- v a fa

Note that iJEk-1 iJEk-2 iJEk-1 iJEk-2 . (26)

iJ k iJJk-1 «1 (26) red \\1 - ,
IT(E(R))- (R-R) = l"(E(R»- [:(E(R» x

[ iJRJ [iJR where the arguments of the functions have been sui:>- r n
iJk-1 pressed for brevity. We will assume throughout thIS Jo

=-[;"(E(R). study that the last inequality holds. Again, the ter~s
iJEk-1 in the sum are found to be small compared with UnIty

,
,. c' ."~
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and R(S)=R(O) -S'. \\.e define E =E(S) so that \\.e assume, o~ce again, that H(R,S) is fairly sharply
--I E peaked about R. Let ~

~['"{E(R) R(O)-,5"= f d[. .\lI(U). (27) - iJl.(E)(R-R) iJ2['"(E) (R-R)2
u [.2(E(R»= ['2(E)+2 - + - -

I . '" - - - - iJE iJE2 l"(E)re p allslble, w~~:: In the approximation R =R(O) -S, we have E = E(R). d ...
s correspo d. I,,",,} , an "

n Ing,?[~J ~ow - - iJu"{E(R) iJ[,"(E) iJ2U(E) R-R ,("'
, "'" dEdS - - II (E) ,.:.';;;} ; - .1'1 1 . =--=-+ - --=-,
,,)t. ' .. iJE iJE iJE2 [,T(E)

.I, To improve our first approximation let with

dR 1~ iJ[,T(E(R)dR - iJM2(E) R-R
in>l. (25) -=-1+ H(R,,)),\I;!(E(R))-. .W;!(E(R)=.W;!(E) + --;-;:-.

~:\ dS 0 iJE iJE [ (E)

We assume that H(R,S) remains fairl}. sharply peaked These approximations lead to

about R until Eq. (10) becomes valid. If so, we can use -. k-2 - dP2 - iJ2[,'(E) ~
.,s)E (R) iJU(E(R) - iJ[,'(E) ,.,-- -:;= -4~W2(E)-=-;-P2 1

.\£2(E(R) =M2(E)--=- dE iJE ~
iJE iJE '~

E(R) J - - iJ[,'(E) iJM2(E) - - ":
E(R)/Ml] +~[ M2(E)~ J~ . -6---;;B -~P2-2M2(E)[,'3(E). ~

iJE iJE U(E) :-!
1

"'E
)-I J This is the first two terms in a Ta}10r series about R. .~ 2(E) is usually.a vef}' slowly v~rying function, In c

-, \\.e then find fact, the .U 2(E) given b}. Eq. (25) IS constant. To get
\I J some idea about the importance of the terms involving

dR - iJU(E) P2 treat M 2(E) as a constant. The integrating factor
-lmE ) -I J -= -1+M2(E)--=-. for the resulting differential equation is
- dS iJE
HI T. - -,-

Lntegratmg, exp[4.\l2(E)iJU(E);iJE].,- - £(0) iJU(E) ';

each new t R(S)=R(O)-S+ r M2(E) U(E)-dE , (28) l~sing the .\In's from Eq. (25), 1;'
tor of the 0 ) !(S) iJE "
one has as . iJ['(E) 4m( 4mE)-I [ ( 4mE ) -I JEquation (28) Includes a lInear vanation of M2(E) and 4.W2(E)-=- In- 1- In- .

variations of M I(E) through quadratic terms. iJE M M I M I

The reader may have worried about the fact that
U(E) becomes infinite when 4mE;M 1= 1. The difficulty The latter quantity is always very small compared with

_v dependen is only apparent since the approximate M n'S are only unity in any case where the P(E,t) used in Eq. (25) is ..,~

the maxi valid if 4mE/MI»1. The problem would not arise valid. Because of the inequality in Eq. (26) we expect'
rgy E. The ~.ith a correct set of M n'S. the quantity to be small in almost any case. We will

n =2. In this case, Eq. (24) yields replace the integrating factor b}- unity. P2(S) becomes

P(E,t)tn-ldt dP2 ~ roc E(O)

dS= f:2 (-I)JI) H.(R,S)iM k(E(R) P2(S)=P2(0)+2 r ,M2(E)u'3(E)dE. (29)[ iJ J k JE(.~)

X ['(E(R)- (R-If)2dR.
f)SS is ver\. small iJR /I =3. In this case only the first three terms on the- 0( . right-hand side of Eq. (24) are important and

~ If the M n'S given b}. Eq. (25) ?ear an}. similarit}. to the -
k-2 r " "" correct ones, the k = 3 term IS smaller than the k = 2 dP 3 dR

term by a factor of the order of m;' M. More generall}-, -+3-P2(S) = -3P2
if Eq, (26) is valid, the terms with k> 2 are small dS dS
compared with the k = 2 term and ~ iJ 2

. dP2 1~ + r H(R,S)lW2(E(R)[ ["{E(R)- J (R-R)~JR
have been su~- ,. -= 2 H(R,S),W 2(E(R) } 0 iJR
throughout thIS dS. 0

\ gain, the terms [ iJU J 1 ~ [ iJ J3 I.red with unity' X u'2(E(R)+-(E(R)(R-R) dR. - H(R,S)M3(E(R) U(E(R)- (R-R)3dR,

iJE 0 iJR
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. If we use our previous approximation for dR/dS, we find we find

i -
) - ~ E(O) d dP aU(E) ~ T - - -

-.!.= -3M2(E)--=-P2+ ( H(R,S)M2(E(R» P2~[(j2(E)M2(E)]dE We will no,
m! dS aE Jo 2(s) d- - this [.(E) I

= [['2(E(0»M 2(E(0)P2(0)
lit [ a["(E(R» - - J --'"' X 3-aE-(R-R)2+6[.'2(E(R)(R-R) dR -U2(E(S)M2(E(:::P2(S)]- - - 5; with

. - x 82[T(~~ - - 2 +2 ~(") [.'J2(E)]2U5(E)dE. :

(; 1 H(R,S)M 3(E(R»[ 3 8E2 (R R) Hence, ~ The ~eader

f! - - . Identical to
f , P3(S)=P3(0)+6[L'2(E(0)M2(E(0)P2(0);~ U(E) and

au (E(R)
J ,! .. + 18 ['(E(R» (R-R)+6l-'3(E(R) dR. ~[;2(E(S)M2(E(S»P2(S)]

I " den,:atlv~2

aE c mati on ~lll

~ Ern) ,.' how goodBecause of Eq. (26) +12 [M2(E)]2[';;(E)dE ,".c X=E Eo, I

!rs) I:
.:111 .:1211 R(J
OJl- - OJ (.; - Ero)~ M2aE(R-R)2»Maaw(R-R)2 -6 ( M3(E) [.'4(E)dE. (30)

and JRCSI y(.Y) =
- a[! - The fourth cumulant can be calculated b, solving

6['2(R-R)M2»18U-M3(R-R). .! aE d d - - ') is gra' -=[P4-3(P2)2] = -12P3-=[[:2(E)M2(E)] see thai

Thus, it is quite accurate to use dE dE ing IT(

;::- i - - a[;(E) xp( -0.1 " 1~ [ aJ3 - +36U2(E)M (E)P2- than ~
H(R,S)M3(E(R» U(E(R)- (R-R)3dR 3 aE Eo befo

0 aR ilar ~.av

=:::6.~f3(E)U3(E). +2~[[13(E)M3(E)JP2-24[";'(E)M4(E). (31) as 0.28,
dE omes grcI I . h h . I h . he intej n eva uatmg t e ot er Integra , t e same approxlma- . . ..

t . d f .:I U i.:l E d U2 . d .. E (29) In the case of ongmall,. monoenergetlc a particles, pert, th: Ions are use or OJ / OJ an as m envmg q. .. .
W fi d protons, or K mesons, three cumulants suffice, except fact, OUI~.. e n at short path lengths where the Vavilov theory holds. t most (J

dP aU(E) aM (E) a2U(E) Three cumu.lants also suffi.c~ for nonrelativisti~ pions ~r. ?efor
~+3 [5- ~+3-M (E)JP and muons If they were ongmaUy monoenergetlc, and Initial VidE aE aE aE2 2 3 their mean energy has been reduced by at least 20%. roximab

" TFus,. in most intermediate or large path length situa- E) b~" U,

d "tions we can combine Eqs. (20) and (28)-(30) in order rom Eq.= -6P2(S)-=[l-T2(E)J.!2(E)]+6M3(E)[;4(E). to calculate H(R,S) and hence F(E,5) from Eqs. (13)
dE and (14). ') =}f(O)

Once again the integrating factor is approximatel~. IV. SOME SPECIAL CASES
unit,", and . . . d h h h . ' In this sectIon we ~lll emonstrate o~. t e t tor, I:;

~Erol d - - - used to calculate F(E,,~} in t,\"O special cases. '

P:,(,S') =P3(Oj+6 P:!-=[['2(E)-,~f :!(E)]dE
R(s) dE '. ere one n' A. Straggling of 50-MeV Protons m Be

dE(O) e oes nc
-6 ( M 3 (E) [i4(E)dE. In this situation, relativistic effects can be neglected, am is mol

J 2(s) and inner shell corrections are small. The M ,,(E)',s given

b~. Eq. (25) can be used. (S) =P (0
Consider the integral involving P2. On integrating b~. In the case under consideration, one has 4mEo -,if I 2
parts and using =::: 1700, where Eo is the initial energ~. of the protons.

\\'e ~"ill no~" demonstrate how one can deri,e simple
dP:! 'dE=::: -2M2(E)[T3(E), but accurate formulas for If, P2, and P;, if 4ml~u MI

-'":--~""-~.,,-- c"--cc~
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,:?; 1()() and Eq. (25) holds. From Eq. (25) 128
U(E) = (E;/2K) (In4mE/ M 1)-1. 1.26 :,

124 c,

,'.e will now investigate the possibility of approximating 1.22 ;
this l'(E) b). a simpler function L'a(E), where 1.20

.1.18 "

RIll
116E ( 4mE)-I (E)a ."; 0 0 "

,)] cc." ['a(E)=- In- -, 1.14 """
" 2K M I Eo 1.12

- I\.ith 110

., :!(E) ]2U5(E)dE. a = 1- (In41nEo ,W 1)-1. 1.08
1.06 ~

'it The reader will recognize this approximation as being 1.04 ',ff;
identical to the one used in calculating .12(S) in Sec. II. 102 ;"

0) ['(E) and U aCE) are equal and have the same first 1.00 0 .1 .2 .3 .4 .5 .6 .7 .8

!] deri~'ativ~ at Eo. This leads us to think that the approxi- y. - In lib
mat1on will be verv good for E near Eo. In order to see F G 1 L' (E)/U (E) (X) M (E) . th t . , . . . 1 . . ~ 4 versus Y . I IS e average s oppmg

how good the approx1mat1on IS for smaller E, ~ power of a particle with energy E, U(E)=[Mt(E)jl, U4(E) is
IE \'=EEo Uo=4mEo/MI b=lnUo and Ihe approximate U(E), b=ln(4mEo/MI), and X=E/Eo. From

. , " this graph one can determine the error made by approximating
R(X) = U(E)/U (E) the stopping power by an expression of the form Mt(E)

a ...M t(Eo) (Eo/ E)4, with a= I-b-l.

U4(E)dE. ( =exp{(ln.\,")/b-In[l+(lnX)/b]).
Let y(,\,") = -(lnX)/b. Then with r=E(S)/E(O). From Eq. (.30) we have

by solving R(.\'")=e-I/(X),/[l-y(.\'")]. m - -
P3(S) =P3(0) +-[E(O) L'(E(O)]

E R(.\'") is graphed as a function of y in Fig. 1. From Fig. 1 M
)] \\'e see that when y(.\'")<0.19, the error made by re- -

placing ['{E) by U aCE) is less than 2%. If E; Eo
( 4mE(0) )-1 >exp(-0.19b), Ua(E) represents U(E) with an error X In--;v[ P2(0)[1-,2a]

:ess than 2%. If 4mEo/!.\f I~ 100, E can be reduced to 1

O.42Eo before the error becomes greater than 2%. In a +4(m! Jf)2[U(E(0»E(0) ]3(1-a)2g(r ,a), (34)
similar way, we find that E can be reduced at least as h

f?)M ~(E). (31 far as 0.28Eo before the error made by using U aCE) were

;~ IJecomes greater than 5%. 3(1-r5a+1) 3r2a(1-r3a+1) 1-r4a+2
: The integrals involved in Eqs. (28)-(.30) have the g(r ,a) = - 1 - 3 1 - 1 2 .

,tic a particl~ propert~. that the integrand decreases as E is decreased. ;,a+ a+ ( -a)(4a+ )

, suffice, exce," In fact, our qualitativ.e di~cussion in ~ec. II suggests If the initial beam is monoenergetic, we can express
v t?~or":( h~l , that most of the contribution to these Integrals should 71 as
:latlvlstlc plO occur before the mean energ:-. is reduced to 35% of
loenergetic, an its initial value th.'-t is from the re"ion where [!a (E) 71= -12(mM)1/2(3a+1)3/2(1-a.)1/2" "
\' .'-t least ~O%.;; approxima~cs L.~E) vcr)" .accuratel)". \\"c _will repl.,-cc X[1_r3a+I]-32g(r,a). (35) ;'
lh length sltua-~ l (E) by [.(E) m evaluatIng P2, P3, and Il. -.' . . ,;;

~)-(.3O) in order~ From Eg. (28) For ;,O-)Ie\ protons mcI~ent of Be~ '\'e use I =:64 e\ :1;

from Eqs. (13J'.~ - - and find a =0.866 and U (Eo) = 10;, mg )Ie\ cm2. :;:

mE(O)
( 4mE(0))-1 E . (33) d (3-) . ld h I f P (S) d ' 1{(S') =1(0) -S' +-[ '(E(O» In qu.ltlons , . .'-n ;, )'1e t.e va u~s 0 :! an ;'..

. 2,W M I 71 t.,-bulated m Table I. Equ.'-tlon (2/) \\'as used to ~j
:3ES - relate the r v.,-lues in Eqs. (33) .lnd (35) to the corre- "'

.
[ (E(S))2a] sponding absorber thicknesses.

J I->~V the theory IS i: X 1- EO ' (32) In };igs. 2 and 3, we have gr.'-phed H(R,S), as calcu-
cases. ~ ( ) lated from Eqs. (20), (33), and (35), for r=0.9i and

. ;;~~T \\.here one must use E
(O) instead of E in calculatin g a for r=O.90. In order to show that H(R,S) evolves

,ns In Be ~" 0 d G . S '. d h I..:,. (one does not have to make this distinction if the initi.,-l towar a ausslan as IS Increase \\'e ave a so

beam is monocnergetic). I;rom Eq. (29) graphed
2m Ila(R,Sj = [27rP2(Sj]-112 exp[ -(R-l{)2 2P2(S')].

P2(S)=P2(0)+M[['(E(0)E(0)]2(3a+1) ~ote that H(R,S) is almost Gaussian by the time r is
. ( 4mE(0))-1 reduced to 0.9.

X In (1-r3a+l) , (33) .In the above c~e, or in any ot~er where the full
M I width at half-maximum of F(E,S) IS ver\" small com- ;

, !
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where 'Y1~0.03, and Eqs. (36) and (37) are not valid in
,,' the thick absorber region. Thus, we should remember

/,,' 3 that Eq. (38) fails both at small and large S. .

' I /'/ If 'Y1 becomes smaller than 0.01 before Eq. (38) [;'(8 '
t /" becomes inaccurate, F(E,S) can be approximated at .

~ //' larger S by "
-11 , cI' / F(E,S)=[211".42(S)]-112 f
~ Xexp{ -[E-E(R)]2/2A2(S)} , (39a) ~ Equation (43
; where - c F(E,S) whirl;; - - - - - (R-RI r"'g/cmZ) .4 2(S) = P2(S):'[ U:(E(R»]2. (39b),. Eq. .(42). Th

"
A I S h b f . I b d .~ particularly lt" FIG. 2. H(R,S) and HG(R S) versus R-ll for SO-MeV protons t arge ,t e en erg.'. spectrum ecomes air y roa ,::

b . .. .'.". .'. ,~ecomesmco
In Be. HG(R,S), the GaussIan approxImatIon to H(R,S), IS gIven and we cannot contInue to use a lInear relation between OJ;

I hby the dashed line. The mean energ)' has been reduced to 48.5 Rand E. However from Eqs. (11) (27) and (32) ~\.n t e .p~e(
, MeV. , " Jstnct valldlt'i

- f l.' ! Eq. (25). Act
pared with the mean ener~., F(E,S) can be calculated R-R= U(E')dE'-mEoU(Eo) ;'small because
from H(R,S) quite easil.'.. Sote that R This results il

[( 4mEo) JI[ (E)20] ase this estR-R= l E L'
(E')dE' X In- (2M) 1- - . (40) , (E'), as ca;l'

M I Eo ould be est"~ E(1i) ~

1-01 .
. . -, .. - y~- ~/om

~ [T(E(R»[E-E(R)] , (36) If E IS near E, U(E) can be approxImated b) At large,

. . - U a(E') = [T(E)(E' /E)c, portant. II
for a.n.'. E .WhiCh IS :very near E(R)..If S corresponds ~o where eglected afte

, a thIn or Intermediate abso~ber thIckn~s, Eq. (3.6) IS c=1-(ln4mE/MI)-I. e interval E

'~ accurate at any E for WhICh F(E,S) 15 apprecIably terval Sl+j
~" nonzero. In the above situation As was pointed out previ'2usly, this t)'pe of approxima- e fraction (

~ F(E,s)~ U(E(R»H(R(E) S). (37) tio~ is quite ~ood if _4mE/MI. is lar~e col1.?;pared with ave a range 1
, umt.'. and E' IS nearE. In partIcular, I! 4mE/MI~ 100, that p=Sl+J

' When Eq. (36) is valid, the shape of F(E,S) is almost we can use Ua(E') in the range 0.42E~E'~2.3E and

I identical to that of H(R,S). be sure that the error made by using the approximate
! , When Eqs. (36) and (37) are valid, F(E,S) can be [!(E') is less than 2%. Even when 4mE.I M 1= 20, th_e

I~' calculated directly. From Eqs. (20), (36), and (37). error is less than 2% in the interval 0.58E~E'~ 1.75E.
,: If the full width of F(E,S) at half-maximum is less than
! F(E,S) = U(E(R»e" Ai(w) , (38) 0.6E, we will usually be able to relate Rand E by

! (3'YV 1/I(2P2) 1/2 R-R= U(E)E(l+c)-1[(E/E)l+c-l]. (41) as been as

P3 have ri where 'Y1, P2, V, w, and Ai(w) are the same as in Eq. (20), With 50-Me" protons incident on Be, Eq. (36) can t the limiti
except the y's in w and v must be replaced by be used until H(R,s) becomes Gaussian. In fact, the corres]

=U(E(R)[E-E(R)}/(2P2(S». Eq;~36) is valid until E is reduced by more than 500/0. ~ribution flY At larger S, we note that P2(S) approaches a constant Iced that

Equation (38) holds when all of Eqs. (36), (37), and value, and H(R,S) is a Gaussian with the width ression for
(20) are valid. However, the three cumulant approxi- (2P2)112=47.1 mg:cm2. In the [l(E') given by Eq. (2.1) en P2(0)=(
mati on used in deriving Eq. (20) is not valid at small S is still valid at large.s' (and small E),

F(E S) = U(E)(E E)cr P )-112 B. Energy S
TABLE I. R, PI, and "'11 for 50-MeV protons in Be. ' -11" 2 -

)'" Xe.xp{ -[R(E)-E]2/2P2}, (42 n this situ:
S n Ps(S) -. . .. e the mean

, (mg/cmS) (mg/cms) (mgs/cmC) "'11 where R(E)-R IS given b.'. ~q. (41). Figure 41s a graph ased on Eq

0.98 105 2770 78 0.0375 of Eq. (42) for the c~e E=8 ~eV ?r '=0.16: ~hJ~ . anty be
0.97 157 2718 116 0.0307 reader may also be Interested m usIng \\'halmg s. (E)'s. Hen
0.96 206 2669 152 0.0266 range-energy tables in order to relate E to R. In thiS t H

(R S')O.W 501 2374 366 0.017 . . ,
0.70 1330 1545 806 0.0077 approach, we Write ct that ~
o.so 20BO 795 1020 0.0057 - 3) rg . I 0.30 2567 308 1100 0.0045 F(E,S)=U(E)(211"P2)-JI2exp[ -(R-R)2/2P2], (4

b)Y 15 OWl0.16 2778 97 1112 0.004 can be u
0.00 2875 0 1116 0.0039 and use R=96.i mg/cm2. R can be related to E by use

of the rancre tables. U(E) is obtained b,. the numerical 1C R. M. Steml'" -

"~c
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are not valid in evaluation of dR dE in terms of differences from the
lould remember tables, For example,
rge ,).
.efore Eq, (38), . R(8,5 Me\')-R(7.5 MeV)
pproximat d r; (8 Me\ )=e at 8.5 Me\--7.5 MeV

= 20.5 mg/l\le\' cm2. .008
A2(S)} , (39a) Equation (43) and \\'haling's tables lead to values of " .004

12 F(E,S) which are quite close to those obtained from
, . (39b) Eq. (42). The use of empirical range-energ\' tables is -50 -40 -30 -20 -10 0 10 20 30 40 50

nes fairly broad particula~ly useful in cases where the theor~tical U(E) (R-R) (mg/cm~)

elation between becomes mcorre~t at small F:' . FIG. 3. H(R,S) and HG(~,S) versu~ R-:R for SO-MeV protons
" and (32) In the precedIng calculations, we have assumed the m Be. HG(R,SJ.. the Gaussian approximation to H(R,S), is given

strict validit}- of r;'(E), .W ~(E), and M aCE) as given bv by the dashed line. The mean energy has been reduced to 45 MeV.

Eq. (25). Actually, the .W ~(E) given by Eq. (25) is to~ ... ..
small because of the neglect of inner shell corrections.. This ,situation. hasl' been studied experimentally by- This results in our P2(S) being too small by 2-3%:'We Roton.dl and G~iger. " T?ey find that F(E,S) becomes

I E )~aJ b~se this estimate on calculations by Stemheimer.14 Gau~sian as expected, SInce a G~ussian is completely:,
\ - . ( [(E'), as calculated from Eq, (25), differs from what spec~fied by (E) and 12(S), we will n.°t compare every , :~

Eo would be estimated from Whaling's range-energy tables detail of. t?e the~retical and experimental F(E,S)'s. ')~
red b\- by 5-15% in the intervaI2<E'< 10 MeV. Instead, ~t is.sufficient to .calculate a=[2.42(S)]I/2 and ~

. At large S, statistical fluctuations become un- compar~ it ~ith .the ~xpenmental values. i
important. If further statistical fluctuations can be In this situation, Inner shell corrections are impor-
negl.ected after a thickness SI, a particle with energy in tant; th~r~fore the.1.{ .(E)'s given b)" Eq. (25) cannot be
the Interval E to E+dE will end up with a range in the used. Livlng~ton .and Beth~16 have used .the first-order

.' interval SI+R(E) to SI+R(E+dE). Let G(p,Eo)dp be Bo~n a.pproxlm~tion to derive an. expreSSion for M2(E)
of approxi . the fraction of particles with initial energy E which which Includes Inner shell correctIons. They find

compared Wi
h. b d . 0

~ E I.{ I> 1 ave a range etween p an p+dp, Choose E and dE so Z' k I Z 2 V2;~'$.2 3"i that p=SI+R(E) and dp=R(E+dE)-R(E). Then ,I.{~(E)=M~B[ -+}: . .n In~ J (44) c

- -' . a Z n ZmV2 I' ~1~e approxima G(p,Eo)dp=F(E,SJdE n !~
~iAjI,:20, - =H(R(E),SJdp, wh~re .I.{~B is the ,,1.{2(E) as calculated from Eq. (25), ~

E= ~ = 1.7:> or Zn is the number of electrons in the nth shell, In is the
um IS less th G(p,Eo) =H(P-Sl,sJ. effective ionization potential of the nth shell, kn is a
and E by constant which will be taken as t for all shells, V is the
a_lJ. (41) It has been assumed that SI is large enough 50 that P2 speed of the incident particle, the sum extends over all ,

': and Pa have reached their limiting values. We then see ~
,.Eq. (36) can, that the limiting values of P2 and Pa should be identical FIE.S) "I

-SIan. In fact, ~;,' to the corresponding central moments of the range 24
,ore than 50%' 11 '; dis~ribution function. The reader may have already
hes a constant ~ 1~ notIced that Eq. (29) reduces to the well-known 20
ith the wid~h; expression for t~e second cent~al moment of G(p,Eo)
en by Eq. (2:') when P2(0) =0, E(O) =Eo, and E(S)=O. 16

., I",.
... ..

.. .12

i B. Energy Straggling of 5.3-MeV a Particles in Air
:J2 2P2}, (42) , In this situation, H(R,S) becomes Gaussian by the 08

, 4 . h ~ time the mean energy is reduced by 5%. This prediction 04.ure is a grap t . b d E (2-) b . .,r ,=0.16, The ':r i~ ~se. on q. :>, ut there is probably consid~rable ;
\\llal' '11 ~ similarity between the correct and approximate ,00. I

E~g
t R Imghs." M .(E)'s. Hence, we ,\;11 proceed on the assumption 0 I 2 3 4 5 6 7 8 9 10 II :

0 . n t is th t H(R S) ' G . f - E (MeV)
a , is ausslan or E~:>.O Me\'. We also

expect that Eq. (36) will remain valid until the mea FIG. 4. Energy distribution function for 50-MeV protons in Be.
- " n The mean energy has been reduced to 8 MeV:)2/2P2J, (43) energY.is lowered considerably. Equations (39a) and .

(39b) can be used until Eq. (36) fails, 15 E. Rotondi and K. \V. Geiger, Nucl. Instr. Methods 40, 192

.~ to E by use (1~). . .
.Ithe numerical It R. M. Sternheimer, Ph}"S. Rev. 117, 485 (19~). (193~: S. Llvmgston and H, A. Bethe, Rev. Mod. Phys. 9, 261
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TAB~ II. Results of the?ry ~nd .experiment for the energy determined from the experimental data of Rotondi and
sjraggling of 5.3-MeV a partIcles In air at 760-mm Hg and 15.C. . .
E,S,andtheexperimentalvaluesofaw~retakenfromRotondi GeIger. When E<I.7 MeV, U(E) wIll be taken from
and geiger (Ref. 15). The values of U(E) were extracted from experimental data.
the E-versus-S data of Roto?di .and Geiger (Ref. 15) and from From Eqs. (29) (45) and (46)
the range-energy tables of Whahn1{ (Ref. 11) (the latter values ' ,
are m~rked with an asterisk). U,,(E) = 1.075(E/5.3)OS7 cm/MeV,
\,"ithEin.\leV. P2(S)=1.28XI0-3[I-r2.7IJcm2, (47) :;a

~ At the tS E [T,,(E) U(E) P!(S) a (keV) whcre r=E;1 Eo, and we have taken P2(0) =0. Actuall)', :I was no alt
~~~ (~~V) (cm/MeV) (cm/MeV) (cml) Expt. Theory 'p2~0) is not zero in the Rotondi-Geige: experi~ent, but ~l' ever, Tsch
0.000 5.300 1.075 1.07~ 0.000 13 0 It IS small and ca.n be neglected a.t IntermedIate and ;~ of ~(E,s)

5.000 1.04 1.05 large absorber thIcknesses. EquatIon (39b) and (47) ,a.chIe,:,ed b
0.833 4.500 0.98. 1.01,0.99* 0.00046 32 31.0 can be combined to calculate a = [2.12(')") JI/2. The sImplIfied f

4.000 0.92 0.91* ~ calculated a is compared with experiment in Table II. uses a P(E

1.388 33.~3000 00.9851 00 .9847. 0.0001 I 43 41.4 The reader !!lay wonder about the continued use of ?y Eq. (2

.:> . .
h h . f E 1 7 '" \ ' ' f II h h , mner shell1.943 3.280 0.82 0.833 0.000933 54 51.9 t e t eor~ or < . .\J.e ter a , t e present t eor) now com'

2.554 2.450 0.69 0.690 0.00112 70 68.6 neglects electron- capture and loss, and these effects are p,
2.998 1.705 0.56 0.556 0.00122 92 89.0 important for E< 1.7 MeV. However, the solid-state to those ~f
3.276 1.140 0.44 0.445 0.00126 109 113.0 detector used by Rotondi and Geiger detects the Tscha~ar
3.526 0.545 0.30 0.40 0.00128 122 127 particles and classifies them according to their energ~', an alummu

t 3.590 0.385 0.44 0.00128 115 115 without regard for their charge state at the instant 1:ase wher~f .:' 3.640 0.275 0.484 0.00128 105 105 they enter the detector. Also, F(E,S) ma)' be broad ~fF(E,S) I.!
1'~ 3.664 0.225 0.528 0.00128 94 95.5 enough by the time electron capture and loss becomes spectrum IJ

' , important so that nonstatistical changes will dominate ,results of ~

changes in the energ~' spectrum due to statistical trum from
I' shells for which 1" < 2m V2 and Z' is the effective num- fluctuations of any kind. In this event, each particle can at H(R".s

ber of participating electrons as defined b~' Livingston be treated as if it loses energ~' at a definite rate. This ,and (42) 1I1
and Bethe. We will use Eq. (44) in calculating M 2(E) rate of energy loss is the weighted mean of the average !these equat

~ for air. rates of energy loss for the different charge states, the
; We first consider M 2(E) for pure nitrogen. We use14.17 weight factors being the fractions of the distance

11=495 eV, ZI=2, 12=57 e\T, Z2=2, 13=38 e\', and traveled while in each charge state. If we determine th d=l-
Z3=3. We find that M2 is 1.35M2B at E=5.3 Me\', but MI(E) from the experimental data and interpret at
it increases to 1.46M2B by th~ time E is decreaseci to F(E,s)dE as the f~action of the particles (without ==

[ - 3.0 MeV. For pure oxygen 11= /10 eV,ZI =2,12=68 eV, regard for charge) wIth energ~' between E and E+dE, Em 1
Z2=2, 13=49 eV, and Z3=4. It is found that M2 is the theory could continue to hold at average energies
1.35M2B at E=5.3 MeV, but increases to 1.41M2R_by below 1. MeV. This is observed to be the case.. ith E",=
the time E is reduced to 3.0 MeV. By the .time E. is The exc~lIent agree,ment ~etween theory and expen- , a =0.84
reduced to 3.0 MeV, P2 grows to about 7:J% of Its ment for E<1.7 Me~ may mvolve some luck. We say's (

;: limiting value. The heavy contribution to P2 from E this _because when E< 1.7 MeV we use a= (2P2)1/2j ge or
,,~;:;.~~ near E(O) suggests that :we can replace M2(E) for air U2(E)._It is difficult to believe tha~ U~(E),_the value
'V." by a constant value 1.38 tImes as large as that calculated for U(E) extracted from the RotondI-GeIger E-versus-S 2P2[
,.', ~ from Eq. (25). This approximation should lead to values data, is, as accurate as the theoretical values of a seem
" which are within 3% of what would be obtained if we to-be. . 18 C. TschaJ
;[, included the E dependence of M 2(E). If the air is at a Comfort, Decker, L)-nck, Scull~', and Quinton5 have Ii M. R. R

pressure of 760-mm Hg and a temperature of 15°C, studied the energy straggling of a particles (Eo=8.78 Laboratory R
we have Me\') in various metal foils. The~. compare the mea-

M2(E)==264 keV2;cm. (45) sured full widths at half-maximum (F"'HM) with the
Bohr theor~'. Even though several different forms of

[-(E) cannot be calculated from Eq. (25), but when M 2(E) are used, they find that the calculated F\\'HM is
E> 1.1 Me\', we can use alwa~'s much smaller than the experimentall~' deter-

mined value at large S. We have found that the same
U(E)=1.075XIo-3(E;/5300)o.57 cmjke\', (46) type of theory used here for air gives good agreement

with experiment5 in the case of nickel foils. It is also
where E is in keV. Equation (46) is an empirical relation found that the experimental results for thin aluminum
which reproduces range-energ~' data fairl~' accuratel~' foils can be calclIlated fairl)' accuratel~' if one assumes
in the interval 1.ISESS.3 Me\'. Table II includes that each individual foil has a Gaussian distribution of
both values of U(E) ~alcclated from Eq. (46) and values thicknesses with a standard deviation of 0.12 times :he

average thickness. The inclusion of nonstatistlcal
17 R. M. Sternheimer, Phys. Rev. 88,851 (1952). spreading of the energ~. spectrum (and multiple scat-
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, tering) may also brin~ th.e theoretical calculations for FIE,s
the other types of foIls Into much better agreementwith experiment. .16

V. CONCLUDING REMARKS .12

W
, At the time the preceding pages were \\.ritten there .0'

i was no alternative theor~- at large path lengths. How-
\ ever, Tschalar'"' has rect:ntl\- extended the calculation .04

of F(E,s) into the thick ~bsorber region. This was
; achieved by carr~.ing out the numerical solution of a 0
2 S 1/2. The simplified form of Eq. (1). In these calculations Tschalar 0 I 2 3 4 5 . ., . 9

in Tablell.; IIses a P(E,t) which leads totheMI(E) and.M2(E) given E(M.V)
tinued use ~" b~. Eq. (25). Hence, these calculations neglect both FIG. 5. Energy distribution function for 49-MeV protons in AI.
resent the inner shell corrections and relativistic effects. We will The most probable energy has been reduced to 5 MeV. v

'Se effects now compare the results derived in the present paper- If th 1 1 . E (42)le solid-st to those of Tschalar. - we use east re atlon, q. becomes

detects Tschalar has considered 49-MeV protons incident on F(E,S) =0. 167(E/4.26)0.752
their ~ner an aluminum absorber. In .particular, he works out the Xexp{ -0.514[(E/4.26)I.752-1]2} ,
c the ms case where the absorber thickness is- such that the peak . .ay be bro of F(E,S) is at E =5 MeV. It is found that the calculated where E IS m MeV. The F(E,s) calculated from the last
loss beco spectrum is in good agreement with the experimental equat.io~ is graphed in Fig. 5. The F(E,s) calculated
vill domin results of Raju19 for E> 2 MeV. To calculate this spec- here IS m excell.ent agreement with the data of Raju
to statisti trum from the present theory, note that 'Yl is small so and the calculatl?n of Tschalar. We have compared the
I particle that H(R,s) is almost Gaussian. We can use Eqs. (41) present theory Wlth.that of Tschalar for cases where the
~e rate. and (42) in. calculating F(E,S). Ho~ever, before using heavy charged particles ~ere pions and helium ions. In
t the avera these equations we must determine E. If we let every case that was considered the agreement between
~e states, . these calculations was excellent. This work achieves to
che distan U(E) = U (E",)(E/ E",)d, a great extent anal~-tica1ly what Tschalar has done
:e dete . \\-ithd=l-(lnV",)-land V",=4mE /M1 we can show numerically. '.ld interpr that '" , T~e theory that has been developed here is not ..

les (wi tho - restrIcted to cases where the ,M n(E) given by Eq. (25)
and E+d E E",=[1-(2m/M)(d)(d+l)(3a+l)-1 are accurate. This is important since inner shell correc-
age energi X(1-a)3(1-d)-2(Eo/E",)4J1/(d+l). ~ions to M2(E) ~re important. in many situations of
ase. Interest. Sternhelmer14 has estimated that these cor-
and expe W_ith Em=S MeV, M/"-,=1840, Eo=_49 MeV, 1=163 re~tions are about 16.% for 10-MeV protons in alu-

uck. \\'e e\, a=0.846, and d=0./62, we find E=4.26 MeV. At mmum. Th~e corrections are larger at lower energies
a=(2P2)11 large S (or small r), and are about 6% even at E=SO MeV. At a given
:), the val energy, these corrections are even more important

- 4m(E )4(1-a)2 1-a f . 1rE-versus- 2P2[Li(E)Ej2=- ~ - -. or a par tic es.
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