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Abstract

“The Design, Implementation, and Characterization
of a Prototype Readout System for the
Particle Tracking Silicon Microscope”

Brian C. Keeney

The purpose of this paper is to describe the development and effectiveness of a pro-

totype instrument with applications in radiobiology. Radiobiologists at Loma Linda

University Medical Center are studying the effects of ionizing radiation on living tis-

sue. An instrument is needed which can correlate particle tracks with specific cells.

Using this information, detailed and precise models of the effect of radiation tissue

can be developed and adapted to cancer therapy and prevention. Engineers at the

Santa Cruz Institute for Particle Physics designed and implemented a prototype read-

out system. This paper describes and analyzes the characterization process of this

prototype. The preliminary results indicate that the PTSM will be able to detect

fast protons and heavy ions with excellent energy resolution and spatial resolution on

the order of a cell nucleus. These measurements will aid Radiobiologists in solving

complex problems in cancer therapy.
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1 Introduction

Oncologists and radiobiologists at Loma Linda University Medical Center (LLUMC)

are studying the biological effects of radiation on living tissue for the purpose of

improving the treatment and prevention of cancer. When ionizing radiation traverses

a cell, there is the possibility of damaging the cell’s DNA, which can, in turn, adversely

affect that cell and the cells which surround it. When cells are damaged in this way,

it is possible for them to replicate uncontrollably. This process is known as “cancer”

[1]. It is important to understand how radiation affects cells both to learn how cancer

develops and to effectively stop it. To date, the standard practice in studying these

effects has been stochastic. Cell cultures have traditionally been irradiated by a micro-

collimated beam of ionizing radiation [2]. By knowing the average fluence and Linear

Energy Transfer (LET), an approximation of the radiation dose can be inferred. With

the development of the Particle Tracking Silicon Microscope (PTSM) it is now possible

to correlate specific particle tracks (and measurements of the LET) with individual

cells. Thus, a very precise study of radiation effects in tissue is possible [3]. This paper

will explain the need for the PTSM, define the requirements that result from these

needs, describe the development process of the instrument, and present the results of

a prototype characterization.

1.1 Biological Motivations for the Development of the PTSM

Radiation can cause damage in cells which can lead to the death of an organism [1].

This damage manifests itself in many ways [4]. The four effects which are of greatest

interest to this project are as follows:

1. Mutations: Mutations occur when DNA is ionized in such a way as to remove

or change a base pair in the DNA lattice. This results in a different genetic code
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being interpreted by the cell. This is often to the detriment of the cell, and is a

cause of cancer [5].

2. Chromosomal Aberrations: Aberrations are mutations which are physically

manifested in the shape of the chromosomes. It is useful to study aberrations

because they are correlated to radiation dose and linked to larger physical prob-

lems in organisms [6].

3. Apoptosis: If a cell is critically damaged and is not able to repair itself, the cell

can either undergo necrosis or apoptosis. Necrosis is harmful to the surrounding

tissue, because the cell walls simply burst, releasing the contents into the tissue.

This causes inflammation and stress in the surrounding cells. When it is possible,

a cell will self destruct by apoptosis. “Stress conditions –such as starvation– as

well as damage to the cell’s DNA –resulting from toxicity or exposure to ionizing

radiation, such as ultraviolet or X-rays– can induce a cell to begin an apoptotic

process [1].” The cell gradually shuts down its internal mechanisms, and breaks

up cellular matter into pieces which are easily expelled from the tissue. This

causes little or no trauma to the surrounding tissue [7]. Apoptosis is a normal

function in organisms, and is the complement to mitosis, or cellular division.

Most diseases are caused by a malfunction in apoptosis or mitosis [1]. “It has

been estimated that 50 to 70 billion cells perish each day in the average adult

(human) because of (apoptosis),a process by which, in a year, each individual

will produce and eradicate a mass of cells equal to its entire body weight [8].”

4. Bystander Effect: The bystander effect occurs when one cell is critically damaged

by radiation. Instead of just that one cell undergoing apoptosis, several cells

surrounding the injured cell also undergo apoptosis [9].
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1.2 Manipulation of Radiation Effects in Tissue

It is important to study radiation-induced mutations, chromosomal aberrations, apop-

tosis, and bystander effects, because all are mechanisms which are involved in both

the causes and treatments of cancer. It is difficult to study radiation effects in the

tissue of large organisms, because there are too many parameters to control. The best

organism for studying these effects is the one which has the fewest cells while still

exhibiting tissue-like behavior. Biologist Sidney Brenner, in the early 1960’s, found a

simple organism which had sufficient cells and was easy to study and replicate with

regularity. C. elegans is a nematode that develops 1090 cells, 131 of which always

undergo apoptosis during development [10]. Every cell is deterministic, in that it

always shows up in the same location and performs the same function. C. elegans

was the first organism to have its genome completely sequenced, making it possible

to manipulate the genetic structure of the organism. Another advantage of using the

C. elegans is that it is one mm long, which makes it barely visible to the naked eye

and easily manipulated in a laboratory setting. Additionally, C. elegans is easy and

inexpensive to produce in bulk with specific phenotypes [10]. The PTSM project uses

C. elegans in its studies of radiation effects in tissue because of these favorable traits.

The most precise way to study these effects would be by relating single particle

events to individual cells. In the past there have been no instruments able to provide

this type of measurement. The PTSM is designed to be able to resolve particle tracks

at the resolution of a cell nucleus, and to provide a measurement of the LET, which

can be used to compute the energy deposited in the cell (dose).1

1Protons deposit energy as dE

dX
∝ E

−.77, where X has units of g

cm2 [11].
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1.3 The Integration of Particle Tracking Silicon Microscope

(PTSM) Measurements into Radiotherapy

Successful radiotherapy destroys the maximal volume of cancerous tissue while seeking

to minimize damage in the patient. Radiotherapy kills cancer cells by stimulating

apoptosis and the bystander effect in the malignant tissue. The favorable mechanisms

of the bystander effect and apoptosis exhibit a saturation effect–after a certain level,

increasing the dose does not provide the same increase in effectiveness. Therefore it

is extremely important to have accurate models of how radiation affects cells.

In order to develop accurate models, large-scale, reliable, and reproducible studies

are needed. The Particle Tracking Silicon Microscope, developed by the Santa Cruz

Institute for Particle Physics (SCIPP) in cooperation with Loma Linda University

Medical Center, can help make such large-scale studies both accurate and economi-

cal. This paper will show how the prototype readout system was designed, describe

the development process of the instrument, and present the results of the prototype

characterization.
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2 Design

In the study of radiation effects in tissue, it is essential that the location and mag-

nitude of the damage be well known. The PTSM project correlates specific particle

tracks with the cells that they traverse. This is accomplished by subjecting a large

number of cells to a broadly collimated proton or heavy-ion beam and tracking the

energy and position of each particle with a silicon strip detector (SSD) based instru-

ment. This section will discuss the considerations in choosing a design which would

effectively measure position and energy of particle tracks in a hostile physical environ-

ment (i.e. a saline solution in contact with electronics and repeated physical contact

with the detector itself), and the technologies (i.e. the detector type, front-end elec-

tronics, readout controller, and data acquisition hardware) that were utilized in the

development of the system.

2.1 Physical Requirements for Particle Tracking

For effective large-scale study of radiation effects in tissue, there are four physical

requirements that must be satisfied in order to obtain optimal results.

1. The spatial resolution must be fine enough to distinguish between two cells.

2. The energy resolving ability of the electronics must be fine enough to ensure

approximate quality (i.e. energy and variance) of the proton or heavy ion beam.

3. The detector must be able to withstand the presence and repeated application

of biological samples directly to its surface. This is important in ensuring the

accuracy of the position measurement by the detector, due to multiple scattering

uncertainties.

4. The system as a whole must be economically accessible to researchers in the

general radiobiology community.
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2.2 Architecture Development

The relatively small scale of the PTSM project allows for a simpler and more compact

architecture than that of most particle physics experiments. The mass of readout and

support electronics required is minimal because only a small active area (< 1 cm2)

is needed to study hundreds of C. elegans, very few channels (< 1000). The small

number of channels, coupled with a low event rate (< 1000 Hz), means that the data

acquisition system (DAQ) can be managed by a PC instead of a larger CAMAC or

server farm. Building a front end from discrete commercial parts is nearly impossible

due to the size of the detector and the parasitic electrical effects that scale with

increasing size. Therefore, a custom front-end chip was designed and laid out at

SCIPP by Ned Spencer. The analog blocks of the design are based on those in the

Gamma Ray Large Area Space Telescope (GLAST). The digital blocks are new, and

reflect the size of the experiment. It was decided that a Field Programmable Gate

Array (FPGA) would be used to implement the Readout Controller (ROC). FPGA’s

are arrays of Configurable Logic Blocks (CLBs) which can emulate any design that

fits on the chip. The ROC is used to do all of the digital processing of the signals

created in the detector and analog front end electronics. Because of the relatively

small data output of the detector electronics, it was decided that a commercial PCI

digital input/output card could be used, plugged directly into a PC.

2.2.1 Detector Selection

The detector selection process involves balancing the relative strengths and weaknesses

of different architectures (pixels vs. strips and single vs. double sided) and pitch to

best detect particles with a minimum of difficulty. The two main parameters which

are influenced by these choices are position and energy resolution.

Pixel detectors are made up of rectangles of doped silicon on one side of an oppo-
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sitely doped wafer. There is a trace (and thus a channel) for each square. A detector

with N ∗N pixels must have N2 connections to readout electronics. Each connection

is ultrasonically welded to the input pads of the readout electronics.

Silicon strip detectors are made up of strips of doped silicon on one or both sides

of a doped wafer. For an N ∗ N array, there are 2N strips. This is the most striking

difference between strips and pixels. When using two sets of strips (from either two

single-sided detectors or from one double-sided detector), there are also two signals;

one from the x-side and one from the y-side. Although the signals are not the same,

they permit two measurements of the charge and thus the resolution is improved by 1√
2
.

One liability in using silicon strips when the amount of charge is not precisely known

is called ghosting. Ghosting occurs when two particles traverse the detector at the

same time. Then there are four possible locations ((X1Y1), (X1Y2), (X2Y1), (X2Y2))

for only two valid hits (See Fig. 1.). This can be overcome when using a double-sided

detector, provided that the difference in the charge deposition of the two particles is

larger than the resolution. Then the two legitimate pairs (each with matching energy)

can be distinguished from the ghosts.

The PTSM project elected to use silicon strips in the instrument, because of the

savings on detector mass and complexity.

Figure 2 shows a conceptual schematic of the detector geometry. The proton beam

enters the research room horizontally. The detector is positioned with its normal axis

aligned parallel with the beam. Biological samples are deposited on the upstream face

of the detector. Particles pass through the biological samples and then through the

detector.
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?

?
X1 X2

Y1

Y2

Figure 1: Schematic diagram of ghosting. The two legitimate events are indistinguish-
able from the two that are nonexistent. When measuring the charge deposited by the
tracks in a double-sided detector, it is usually possible to correlate the two X and Y
measurements such that the ghosts can be removed.

Biological 
Samples

PMFE

Test Board
Beam

SSD

Figure 2: Schematic diagram of the PTSM detector geometry.
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2.3 Front End Chip Specification

In the PTSM architecture, the front end chip amplifies and digitizes the signals coming

from the silicon strip detector SSD. It then sends the digital channel status information

to the readout controller (ROC). The major specification to be made in the Particle

Microscope Front End (PMFE) was that of the shaping time.2 Charge signals are

emitted from the detector as short bursts of current, lasting up to 30 ns [12] This

charge is deposited on the input of the PMFE, where the input capacitance and

input resistance are very large. This can be modeled as a current source charging a

capacitance, which forms a ramp in voltage. Since this happens over 30 ns, which

is much smaller than the discharge time, the effective waveform is a step function.

A preamplifier amplifies the charge on the input capacitance into a voltage which is

proportional to that charge. A shaper circuit, similar to a differentiator/integrator,

then shapes the step into a longer (in time) pulse with a quasi-gaussian shape. A

characteristic of the shaper (called the shaping time) is the time that the shaper takes

to rise from 0 to the maximum pulse height. The time during which the pulse is

above a certain threshold is a function of the input charge, which in PTSM is used

as a measurement of the particle energy. Only a very approximate measurement of

the energy is needed, enough to verify that the incident beam energy is in the correct

region. Picking the rise time is a trade off between resolution on the pulses, dead time,

and noise. If the rise time is very short, then many events can occur sequentially on one

channel, and the amplifier will be able to distinguish them as individual pulses. The

downside is that there will be poor resolution on the magnitude of the input charge

(assuming that the TOT is used as a measurement of charge, and not the height of the

pulse). By lengthening the rise time, the precision on charge measurement increases,

but different charge inputs might overlap, making two small charges look like one

2A related term is the rise time, which is the convolution of the shaping with the collection time.
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large one [13]. These statements assume that the sampling rate of the signal is kept

constant. PTSM chose to use a shaping time of 200 ns, and a maximum pulse length

of 300 µs, which corresponds to a maximum particle rate of ∼3 kHz for very large

charge.
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2.3.1 Field Programmable Gate Array (FPGA) Selection for the

Readout Controller (ROC)

All digital communication in the PTSM is required to be in a logic family called Low

Voltage Differential Signaling (LVDS). It is a balanced pair of digital signals which

minimize interference in the analog portion of the microscope (See section 3.6.1). This

requirement made selection of the FPGA type very easy because at the time of part

selection, only the Xilinx Virtex 2 series had the capability of LVDS communication.

From there it was relatively simple to pick a model in the Virtex 2 series which

conformed to the speed and size requirements of the PTSM.

2.4 Data Acquisition Hardware

The PTSM project wanted a portable and economical way of transferring and storing

data from the ROC. A PCI based data input/output (DIO) card was an obvious

choice, because it can be installed in any PC. At the time of selection, there were no

affordable (<$5000) LVDS based DIO cards available. National Instruments makes

a single-ended DIO card, the NI6534. The PTSM project decided to use the NI6534

with a custom converter card to translate between CMOS and LVDS.

2.5 Conclusion

The PTSM project developed a non-standard architecture to scale existing technology

in particle physics and electronics to a new area of research. A double-sided silicon

strip detector was chosen because of the improved energy resolution and detector mass

savings over pixel detectors. An ASIC front end chip, the PMFE, was specified to

amplify, condition, and digitize the detector signals. A Xilinx Virtex II FPGA was

chosen to implement the readout controller (ROC) because of its ability to utilize the

LVDS logic family. A PCI data I/0 card, the National Instruments 6534, was chosen
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to transfer data from the FPGA to the PC based data acquisition system (DAQ).

Having specified the architecture and functionality of the detector, front end, readout

controller, and DAQ, engineers at SCIPP constructed the PTSM.
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3 Implementation

The implementation of the PTSM was carried out in parallel by several groups. Si-

multaneously the PMFE, readout controller(ROC), DIO card software, and printed

circuit board (PCB) development were undertaken. The prototype SSD is an ATLAS

single-sided “Test” detector with 50 µm pitch and is six cm long. The PMFE was

designed to interface on one side with the SSD and on the other to be bonded to

traces on a printed circuit board, called the Test Board. The Test Board is designed

to provide services (e.g. biasing and calibration signals) to the SSD and PMFE, and

to interface with the Readout Controller (ROC). The ROC is implemented on a Xilinx

Virtex II XC2V1000-FG256 Field Programmable Gate Array (FPGA). The FPGA is

mounted on a Xilinx Virtex 2 FG256 Proto Board. The Test Board mounts directly

on the prototyping board through arrays of stake headers. The ROC interfaces though

twisted pair ribbon cable to a translator board, which converts the data signals from

LVDS to CMOS. The Translator Board then connects to a PCI based DAQ card,

the National Instruments 6534, in a PC. This section discusses the methods used in

implementing the detector, front end, readout controller, and DAQ of the PTSM, and

will explain the motivation for choosing these methods.

Before discussing the details of how the prototype readout system is implemented,

it helps to understand the theory of operation of PTSM. (See Fig. 3 for a system-level

diagram of the prototype readout system.) The proton beam at LLUMC has a very

well defined spill structure, with ∼100 protons spaced evenly over several hundred

milliseconds in an area of ∼100 cm2. These spills occur every 2.2 seconds. (Heavy

ion sources are not as well defined, but the proton beam provides a reasonable base-

line estimate of the particle rate.) When the DAQ is ready to start taking data, it

raises an asynchronous “start” line, which is continuously polled by the ROC. The

ROC then begins allowing events from the PMFE to be interpreted and sent to the
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DAQ. The data from the PMFE are the time-division-multiplexed statuses of all 64

channels. The statuses are transferred over 8 signal pairs in four clock cycles at Double

Data Rate (DDR). The ROC looks for transitions in each channel and sends an event

packet (holding the channel, the direction of the transition, and the time) to the DAQ.

An event in PTSM is defined as a transition from low-to-high or from high-to-low of

a latched comparator output. Data is transferred from the ROC to the DAQ card

(National Instruments 6534) via a fully synchronous handshaking protocol (see Fig.

12, Section 3.4.4 and Source [20]). When data needs to be cleared from the RAM

on the NI6534, the NI6534 lowers an “ACKnowledge” line. The ROC buffers data

in a first-in, first-out buffer (FIFO) until the NI6534 is able to receive it again. This

should not be confused with dead time; it merely means that data is stored in the on

Figure 3: System-level diagram of the PTSM prototype.
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board memory of the ROC until it can be transferred to the DAQ. 3 When the DAQ

is finished taking data, it lowers the “start” line. The ROC then stops taking data

and sends the last of its data to the DAQ. When the on board FIFO’s are empty, it

then raises a “done” line, which signals to the DAQ that there are no more data to

be sent. The ROC holds all data-handling state machines in reset until the “start”

line is raised again. There is currently no external triggering. The ROC sends all

transition events (channel comparators going low to high and then high to low) to the

DAQ as they occur. There is an additional function built into the controller where

the controller, when signaled by the “start” line, triggers the pulse generator 1 or 100

times. It then reads out the resulting data. This is used to calibrate the PMFE’s

analog gain and TOT gain.

3The only dead time occurs in the PMFE, and currently lasts for 5 ns (see Section 3.2.2 for a
discussion of the dead time). For reasons that are explained in Section 3.2.2, a particle would have
to deposit ∼1.25 fC or less at exactly the right moment in order not to be detected during this dead
time. The probability of this occurring is negligible.
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3.1 Silicon Strip Detector

The silicon strip detector is the sensor in the PTSM. When a particle traverses one

of the depleted PN junctions in the detector, a small bursts of charge is liberated,

which the front end amplifier collects and amplifies. A single-sided detector was used

for the prototype because it is identical with respect to analog characteristics while

being much easier to implement mechanically.

3.1.1 Properties of Silicon Strip Detectors

Silicon Strip Detectors (SSD’s) are arrays of diode strips. The fabrication of these

strips is usually accomplished by implanting strips of P-type silicon on N-bulk. The

diodes are back-biased (depleted) with ∼1-40 MΩ resistors connected to ground. (The

backside is biased at ∼100 V.) The strips are then capacitively coupled to the signal

connections by placing an aluminum oxide layer over the strip with a silicon oxide

layer sandwiched between the aluminum and the strip. The capacitive load seen

by the input of the amplifier varies depending on the geometry of the detector, but

typically it is 1-2 pF/cm [14].

When a particle traverses a depleted junction, it deposits a certain amount of

energy, which in turn liberates e-/e+ pairs. These charges flow up their potentials,

creating a very brief spike in current. This current is very small, and is most commonly

referred to in terms of charge, not current or voltage. A typical signal of one Minimum

Ionizing Particle (MIP) is about 25,000 electrons [15]. Assuming a 1 cm detector and

a 25 ns collection time, the average current is 160 nA. If a detector were not connected

to any other circuitry, the peak voltage would be 2.7 mV (assuming 1.5 pF). When

an amplifier is connected to the strip, the effective capacitance becomes much higher,

decreasing the voltage.

Since SSDs are depleted in normal operation, there is very little quiescent current,

16



typically ∼1 nA
cm2 . This is an extremely important parameter because of the signal

size. What in other applications would be considered to be negligible variations in

bias current translate to potentially crippling shot noise at the output of the detector

(inoise =
√

2qibiasB, where q is the charge of an electron and B is the bandwidth in

Hz [16]. The shaping time of the amplifier is a reasonable measure of the bandwidth.

The equation for the noise can be rewritten in terms of noise charge by substituting

this value:

qnoise =
√

2qibiasTshaping (1)

Using the previous values, and a shaping time of 300 ns (that of the PMFE) the noise

is 60 electrons, which is very small when compared to one MIP. Another important

parameter of a SSD is the capacitance. The effective input capacitance of the ampli-

fier stage must be much larger than the detector capacitance, because otherwise the

amplifier will appear as a high impedance node, which will cause a long shaping time

before the shaping stage, which is undesirable from the point of shot noise.

The spacing between adjacent detector strips, or pitch, is a trade-off between

resolution and the number of channels. Obviously having many strips improves the

resolution, but it adds cost, complexity, and mass to the system. More channels are

needed, which translates to more bonding pads on chips, more power consumption,

and in some cases active cooling. All of this is difficult and costly. Conversely, one

large strip covering the active area will capture all the charges, and will be inexpensive,

but will tell nothing of the position of particle tracks and have large capacitance. One

first needs to decide what resolution one can live with, and then pick a detector pitch.

The resolution is not the pitch, as one might assume:

There is a very good probability (near 100%) that if a particle traverses a strip, or

any point before the half way point to the adjacent strip, that a hit will be registered

(See Fig. 4). This assumption gives rise to a box probability distribution,
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P (x) =



























0 x < W/2

1 −W/2 < x < W/2

0 x > W/2

where W is the strip pitch, and the origin is at the center of the pitch. By symmetry,

< x >= 0 (2)

One can derive the standard deviation, σ, which is the positional resolution of the

detector.

σ2 =

∫ W
2

−W
2

x2− < x >2 dx
∫

W
2

−W
2

P (x)dx
(3)

σ =

√

√

√

√

x3

3 (W
2 , −W

2 )

x(W
2 , −W

2 )
(4)

Therefore,

σ =
L√
12

= .289L (5)

This result means that for 2√
12

of all events, the particle will have landed within 1√
12

of the center of the strip. For the Silicon strip detector to be able to resolve whether

Figure 4: Schematic array of silicon strips on a Detector.
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or not a particle hit a 20 µm diameter nucleus to 50%,

Lmaximum = 10−5m ∗
√

12 = 35µm (6)

As was stated previously, this value of 35 µm is a worst case estimate, because it does

not take into account that there is a measurement of the charge deposited on each

strip. Using the ratio of charge deposited between 2 strips, actual position resolution

can far exceed this value. Since the project is interested in using protons or heavy ions

with relatively low energies and correspondingly high Linear Energy Transfers (LET,

dE/(ρdX)), working with a double sided detector is advantageous for two reasons.

First, if a particle stops in the first of two single sided detectors (X-Y pair), there

will be no position resolution in one dimension. Secondly, the particle emerges from

the first detector with a slightly different trajectory than the one it entered with. By

using a double-sided detector, the particle has to go through half of the mass that it

would have otherwise had to in order to register as a legitimate event. Therefore, the

project decided to use a double sided detector. The downside to using a double sided

detector is that the pulses that come out of the N side are negative. Therefore, more

sophisticated front-end electronics must be developed to handle both the positive and

negative pulse shapes.

The goal of PTSM is to be able to detect whether or not a proton or heavy ion

traverses a single cell. The diameter of a cell is ∼10-20 µm, which necessitates a pitch

of ∼35 µm. The detector that best fits the needs of the PTSM for prototyping, is a

SINTEF double sided SSD with 50/80 µm pitch (P/N) and an active area of 2.4 cm

X 1.2 cm. 4 As the project matures a custom detector with a smaller active area and

finer pitch will be developed.

4PTSM uses only .64 cm X 1.2 cm.
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3.2 The Particle Microscope Front End (PMFE) Application Spe-

cific Integrated Circuit (ASIC)

The heart of the electronics of the PTSM is in the Particle Microscope Front End

(PMFE). In the PMFE are 64 charge-sensitive amplifiers and shapers which detect the

charge on the detector strips and turn it into an easily digitized signal. Pulse-width-

modulation circuitry converts the analog signal to a digital one. A parallel-to-serial

converter shifts the status of each channel out over 8 wires in 4 clock cycles using

Double Data Rate (DDR).

3.2.1 Charge Amplification

Charge amplification is the first and most critical of the electronic operations in the

PTSM. An RC network is formed with the detector’s coupling capacitance and the

input resistance of the amplifier. This RC is typically much larger than the 25 ns

collection time. As the charge is collected the voltage at the front end rises linearly.

The discharge time is much larger than this charging time (as much as several thousand

times greater, due to RinampCinamp+det) [12]. (Refer to Fig. 5 for a logarithmic

representation of the pulse shapes.) This discharge time must be greater than the

shaping time. Otherwise charge will be removed from the input of the amplifier

before it has been fully integrated. The discharge time must be short enough so

that the charge is completely removed from the input before the next particle arrives.

Otherwise, there will be overlap between the two charges, which will cause inaccuracies

in the measurements.

Fig. 6 shows a schematic of a charge-sensitive amplifier. The gain of the amplifier

is inversely proportional to the value of Cf . The gain of this amplifier can be derived
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as follows: The charge on Cf will be the same on both sides. Therefore

Qi = Qf = Cf ∗ Vout (7)

ln(T)

I

V

Figure 5: Charge in a detector. I is the current from the detector while the charge
is being collected. V is the voltage at the input of the amplifier. The voltage rises
with increasing charge, and slowly decays. Here the time scale is logarithmic. The
duration of I is typically 25 ns, while the duration of V is much longer, and depends
on RampCamp+det

VOUT

DET

C_F

Qin

Figure 6: Schematic of charge sensitive amplifier.
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The gain is the voltage output compared to the charge input. Rearranging eq. 7,

Gain =
Vf

Qi
=

1

Cf
(8)

3.2.2 Digital Topology in the PMFE

Having amplified and digitized the charge impulses, the next and final task of the

PMFE is to register the digitized channel statuses and transmit them to the Read-

out Controller. This section describes the process by which 64 channel statuses are

mapped to specific time slices over 4 clock cycles and multiplexed onto 8 signal lines.

Figure 7: System level timing diagram for the PMFE. The FDR’s are D flip-flops
with resets, and the M2’s are two input multiplexers (see Glossary). B CLK defines
the bus cycle, which is 5 clocks long. The data is transferred over eight differential
signal pairs{D7-D0} (only the first, D0, is shown). The channel numbers which are
transferred over D0 are indicated. The channels for D1 are {14, 15, 12, 13, 10, 11, 8,
9}, D2 = D1 + 8, etc...

Front End Latches The output of the shaper is fed to a comparator with a thresh-

old voltage. A rising edge from the comparator feeds to the input of an asynchronous

set/reset (SR) latch. In one chip, there are 64 front-end amplifiers, 64 comparators,

and 64 SR latches. At a specific time in the bus cycle (a bus cycle consists of five clock

cycles and begins with a B CLK) on the front-end chip the statuses of all latches are

checked and then reset. The frequency of this operation determines the quantization,

and thus the precision, on TOT. The TOT is defined as the number of B CLK’s for

which a given channel is high.
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Parallel to Serial Data Conversion One approach to transferring the channel

information to the outside world would be to have signal pair for each channel. This

would work, but it would make the size of the chip very large given the pitch of the

detector. It also would require a lot of power to drive each wire, which in turn would

cause heating, noise, and power supply problems. The opposite approach would be to

serialize the data, which is a technique where each channel gets its own slice of time

on one wire [17]. This technique, called Time Division Multiplexing (TDM) is very

inexpensive because there is only one data output pad on the chip, which can make it

very small. When one does this the effective data rate is decreased by 1
Nchannels

when

compared to the parallel technique. The technique used by PTSM is a compromise

between the two, appropriately named serial/parallel. The PMFE serializes groups of

8 channels, cutting the wire count by a factor of eight. It also uses a technique known

Double Data Rate (DDR), where data is read out on both the rising and falling edges

of the clock. For instance, if the clock is running at 100 MHz, it is possible to read out

200 megabits of data per second per wire. This technique is accomplished by using a

pair of positive and negative-edge triggered flip-flops together for each data line. This

means that the statuses of two channels can be read out in one clock cycle, one on the

rising edge and one on the falling edge. For example, channel 0 could be valid during

the rising edge of the clock cycle and channel 1 then could be valid during the falling

edge of the clock cycle. This places higher demands on the system, because data must

be latched twice as fast, cutting all slack time in half. Figure 7 is a timing diagram of

how data is clocked out from the front-end chip. Note that on every signal line there

are two channel statuses transferred for every clock cycle.

Below (Fig.8) is a schematic of part of the digital section of the front-end chip.

This block repeats 16 times in the chip (8 for the even channels, 8 for the odd), and

is basically 4 SR latches, and a four-bit shift register. Note the signal called B CLK.

23



This is a reset pulse, which determines the bus cycle. The time during which B CLK

is high before clock is high loads the shift register. The time when the two signals are

overlapping clears the SR latches. When B CLK falls, the shift register stops loading

and begins to shift out the data on each edge. The data is clocked out over four cycles,

followed by one cycle of dead time.

Dead Time When both the B CLK and CLK are high (see Fig. 7, the front end

latches are in reset. If comparator goes high during the reset, and continues to be high

Figure 8: Schematic of the digital region of the PMFE. An identical block handles
the odd channels for the data line. The two are multiplexed by the fast clock at the
multiplexer furthest to the right.
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after the reset falls (5 ns at 50 MHz), the latch will go high, as it should, and the event

will be recorded. If the comparator goes high and then low (where the peak of the

pulse just grazes the threshold voltage) during this brief window, the event will not

be recorded. At a gain of 120 mV
fC

and a threshold of 120 mV, this would correspond

to a ∼ signal, which is highly unlikely for a legitimate particle [26].

Proper Acquisition of Data From the PMFE When transferring data, it is

important that the data is valid during a clock edge. If the data is changing while

the clock is changing, the value latched by the readout controller will be either the

data from before or after the transition, but it will be impossible to know which. (See

figure 9.) The time during which the data must be stable before the rising edge of the

clock is called the setup time and the time after the rising edge is called the hold time

[17]. Since data is being transferred at DDR, it is especially important that the setup

D
CLK

Q

T_Setup T_Hold

Figure 9: Timing diagram of setup and hold requirements. D is the input, Q is the
output, and CLK is the clock.

and hold times are obeyed. Failure to latch the data correctly means that channel

identities will be mis-matched, which is disastrous for this instrument.
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3.3 The PTSM Test Board

The Test Board provides several services to the PMFE and detector, if one is be-

ing used. It provides a low-noise threshold voltage. It also has some rudimentary

logic to control how calibration pulses are routed to the PMFE. It has several filters

which condition power signals being brought to the PMFE, and provides a durable

mechanical test platform for several different types of experimentation.

Comparator Threshold Voltage The comparator threshold in the PMFE is set

by an American Reliance Programmable Power Supply via GPIB. It has accuracy to

1 mV. The signal is transported via RG-58 cable to an SMB connector on the Test

Board, where it is processed further by an AD620 instrumentation amp and low pass

filter to reduce errors in the voltage.

Calibration Control The calibration pulse is transmitted via RG-58 cable from a

LeCroy 4145 to an SMB connector on the Test Board. There it is terminated and

routed through four CMOS switches (ADG-436). The output of each of these switches

is passed to a calibration bus which feeds to 50 fF capacitors at the input of every

fourth channel on the PMFE. Additionally, there are 16 2.2 pF capacitors mounted

where a detector would otherwise be. Wires can be bonded from these capacitors

to the amplifier inputs. These capacitors are switched using jumpers on four stake

headers in groups of four (four calibration capacitors for each of four buses). In this

way a very large charge can be injected with very low voltages, minimizing channel-

to-channel crosstalk at the inputs of the amplifiers. For example, injecting 20 fC with

the external capacitors (2.2 pF) requires only 91 mV, while the internal capacitors

(50 fF) require 400 mV to inject the same charge. The maximum rate of change of

voltage between two conductors, where one is being driven and the other is quiescent
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is [18]:

dV

dT
=

∆V

Tr
(9)

Where ∆V is the difference in voltage between a logic 1 and 0, and the rise time, Tr,

is [18]:

Tr = 2.2ZoC (10)

Zo is the characteristic impedance of the driving conductor, and C is the load capac-

itance. The maximum current crosstalk is derived below:

Q = C ∗ V (11)

dQ

dT
= i = C

dV

dT
(12)

(13)

Icrosstalk = Cmutual
dV

dT
(14)

Where Cmutual is the parasitic capacitance between channels, and Ccalibration is the

capacitor through which charge is injected. The total current crosstalk in terms of

capacitance is then:

dQ

dT
= Cmutual

∆V

2.2ZoCcalibration
(15)

which clearly shows that there are gains to be made by both increasing the capacitance

and decreasing the voltage.

The total crosstalk savings can be seen by comparing the two crosstalk errors for

an equivalent amount of charge input.

Q1 = Q2 (16)
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C1 ∗ V1 = C2 ∗ V2 (17)

C1

C2
=

V2

V1
(18)

iC1

iC2

=
Cmutual

∆V1

2.2ZoC1

Cmutual
∆V2

2.2ZoC2

(19)

iC1

iC2

=
∆V1

C1

∆V2

C2

=
V1C2

V2C1
(20)

Substituting eq. 18 into 20, the total crosstalk savings is (C1 = 50fF , C2 = 2.2pF ):

iC1

iC2

= (
C2

C1
)2 = (

50 fF

2.2 pF
)2 = 516.5 ∗ 10−6 (21)

This means that the crosstalk for the equivalent charge is reduced by a factor of

nearly 2000 when using the external calibration capacitors. For large charge inputs,

the external capacitors are essential.
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Biasing The Test Board also routes and filters the detector bias voltage, as well as

several other bias currents and voltages for the PMFE.

FPGA Interface The Test Board (See Fig. 10) was designed to mount directly

onto the stake headers of a Xilinx Virtex 2 FG256 Proto Board (See Fig. 11 for a

photo of the Proto Board.), which is a prototyping workstation for Xilinx FPGAs. The

Proto Board provides a variable frequency clock, the connection to a PC for design

downloading, and arrays of stake headers leading directly to the FPGA input/output

blocks. The Test Board uses a system of female row headers on the back side of the

PCB, such that it sits directly on top of one stake header array.

3.4 The Readout Controller

There were very few requirements placed on the design of the Readout Controller

(ROC). In fact, the only two requirements on the structuring of the ROC are at

the interfaces to the PMFE and the NI6534. The front-end chip requires a very

specific clocking structure (Fig. 7), and the data acquisition card follows a strict fully-

synchronous handshaking protocol. Since there is no buffering or handshaking between

the ROC and the front-end chip, it is essential that the ROC have the capability to

send the front-end clock and B CLK, to know when data would be arriving back at

the ROC, to latch it correctly, and to process it quickly enough so that there are no

overruns.

There is a delay between the time when the front-end clocks are sent and when

data is received at the ROC, due to the propagation delay in both the wires and chips

(See Eq. 22).

Tdelay =
1

c
∗
√

ε ∗ l = 84.7
ps

in
∗
√

4.5 ∗ l (22)

c is the speed of light, ε is the dielectric constant (FR4 PCB is 4.5 [18]), and l is the
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distance of the PCB trace. It is necessary to be able to adjust the phase between the

clock which latches the data in the ROC and the clocks that are sent to the front-end

chip so that correct data can be acquired. By looking at the front-end DDR registers,

one can vary the phase until the correct data is latched (i.e. data associated with a

Figure 10: Photo of the Test Board. “A” shows the PMFE. The detector bias ring is
marked by “B”. If a detector is used, a window is milled out, removing region “C”.
Within “C” are the 16 external calibration capacitors. The detector bias circuitry
is located at “D”. Calibration pulses are routed through an SMB connector at “E”.
The two IC’s above “F” are the CMOS switches which route the calibration pulses
to the four buses. The IC below “G” is the AD620, which conditions the comparator
threshold voltage, brought in on SMB connector “H”. All LVDS communication is
routed through the connectors on the back side of the board at “I”.
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positive edge is always latched correctly, and data associated with a negative edge is

always latched correctly on a negative edge). A feature of the FPGA called a Digital

Clock Manager (DCM) is used to implement this function. A DCM is a physical

device in the FPGA, which can vary phase, manipulate frequency, change duty cycle,

and implement other functionalities. There are eight DCMs in the XC2V1000 [19].

The other requirement placed on the Readout Controller is that it be able to inter-

face with a National Instruments PCI-6534. The 6534 is a Digital I/0 (input/output)

card with 32 single ended, bidirectional data lines. In addition, it has a bidirectional

clock, and two handshaking lines, ACK (acknowledge, or ready for data), and the

REQ (request, or ROC ready to send data). The 6534 has several modes of opera-

tion. In the mode used, Burst Mode Handshaking (more commonly known as Fully

Figure 11: Photo of the Test Board mounted on the Proto Board. The Proto Board
is denoted by “D”. The Test Board is at “C”. The output data lines from the ROC
are shown at “A”. The FPGA is in the socket at “B”.
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Synchronous Handshaking), the ROC sends the clock to the 6534 and waits for ACK

to be high, signaling that the 6534 is ready to accept data. When the ROC wants

to send data, it raises REQ and places data on the bus. On the rising edge of the

clock, the data is latched by the 6534. If ACK falls, it means that the data will not

be latched.

These requirements placed on the interfaces of the ROC are the only constraints

placed on the architecture. The rest of the design is flexible, and is a compromise

between speed, gate count, and data compression.

3.4.1 Timing Services

As has been stated previously, it is very important that data be latched from the

front end chip at the correct times, otherwise channel statuses will be mislabeled, and

some statuses will be lost altogether. To remedy this, there are two parameters which

must be constant every time that the ROC is reset. The phase between the front

end clock (FE CLK) and the main clock (CLK) must be aligned such that the rising

edge of CLK is framed squarely by the rising and falling edges of the even channel

data. This is referred to as correct phasing of the clock. Secondly, the front end

state machine must start so that when it latches its first positive channel, valid data

is present from the corresponding channel on the front end chip. This is referred to

as correct framing of the clock. If everything starts deterministically after the falling

edge of the reset pulse, this is a trivial task. However, the DCMs are analog devices

which take varying amounts of time to lock onto their clock signals. Since two DCMs

are cascaded in this design, one must wait until both DCMS are locked onto their

frequencies. Secondly, the DCM outputs glitch for the first 10 clock cycles after the

LOCKED signal goes high, so a delay must be inserted (using a counter) to remove

the possibility of synchronizing incorrectly on the glitches. Additionally, there is a

32



variable phase between FE CLK, CLK DATA, and CLK. All of the state machines

in the ROC are clocked with CLK, but need to start with respect to CLK DATA. In

the case of a state machine glitching and needing to restart, the signal must also be

recurring, i.e. a step function cannot be used. Therefore, a clock which is 1/5 the root

clock frequency (used to make the B CLK pulse) is used to provide the synchronization

pulse to SER 2 PAR.5 The clock tree source code can be found in appendix B.1.

3.4.2 De-serialization of PMFE Data

The first step in handling the data is to decode it from eight channels over eight wires

to 64 registers, each holding the status of a particular channel. Since it takes five

clock cycles (4 for readout and one reset cycle) to read in all 64 channels, the 64-bit

register is updated every five clock cycles. The buffering of the 64 bits has to begin

at the correct time in the bus cycle. If it doesn’t, some of the channels will be missed,

and the rest will be incorrectly mapped, due to misalignment of the bus cycle and the

latching cycle. This synchronization has to happen on startup. The state machine

uses a clock from which that B CLK is derived, and triggers a counter after the rising

edge of that clock. The state machine begins latching data when the counter has

delayed by a set number of fast clocks. The exact number of clocks is found by trial

and error using jumpers on the Proto Board. As stated previously, it is desirable to

run the front-end as fast as possible because the precision on TOT is proportional to

the sampling rate. Therefore, this de-serializing block of the ROC should be organized

to run as fast as possible. One way to ensure a high running speed is to arrange the

logic blocks very tightly. This way, there will be very low skew (See Glossary), even

though the regular routing layer is used. Additionally, it is possible to latch the data

in the input/output blocks (IOBs). IOBs are a slightly different type of CLB, which

5The root clock is the fastest clock on the FPGA, used to run most of the state machines and
services in the ROC.
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additionally contain the physical pin connected to the outside world. The signal from

the front-end chip first comes through the IOB before traveling to the rest of the

ROC. The IOBs have two flip-flops, one of which can be configured as a negative-

edge-triggered flop. Therefore, a very elegant way of latching both the positive edge

data and the negative edge data is to configure the IOB to grab both edges using its

two flip-flops, one of which is configured in negative-edge-triggered mode.

At that point there is no need to keep the negative edge data in negative-edge-

triggered flip-flops, so the change to one time domain can be made immediately to only

positive-edge-triggered flip-flops. This reduces the complexity of the design, which

therefore reduces the possibility of mistakes. Four 16-bit flip-flops are linked in series,

and continually latch and shift the data from the DDR IOBs. This configuration

is known as a shift register or pipeline, because data continually shifts through the

flip-flops (See Appendix B.2 for the complete de-serialization source code.)

At any one time there are four registered time slices from the front-end chip being

shifted through the pipeline. If one were to look during the correct clock cycle, one

would see the statuses of all 64 channels at the outputs of the flip-flops. The outputs

of these flip-flops are then wired to a single 64-bit flip-flop with a clock enable. At the

appropriate time in the bus cycle, the clock enable on this 64-bit register is raised,

and the status of all 64 channels is captured. A strobe called “data ready” signals to

the subsequent stage that the data is present and stable, and will continue to be for

four clock cycles. The following stage synchronizes off this pulse, but does not use it

at any other time, because the signal is periodic.

3.4.3 Buffering the Data/Zero Suppression

It is important to compress data as quickly as possible, because every stage where

the data is not compressed must have a higher throughput than would otherwise
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be necessary. Delaying data compression translates directly into cost and difficulty.

PTSM uses a blend of zero and data compression. The output from the PMFE is the

multiplexed status of all channels over one bus cycle even if a channel is inactive, and

has been for several seconds, the PMFE will continue to send its status. Therefore,

the first operation that is done on the data after de-serialization is to store information

about a channel only when it transitions from low to high or high to low. Since there

are 64 channels to perform this operation on, and only four clock cycles in which to

do it, parallel processing techniques must be used. It makes sense that the largest

number of channels able to be monitored by a state machine over four clock cycles

is four, because it needs a clock for each comparison. “Channel server.v” is a state

machine with one init/synchronization state and four monitoring states. During the

init state, Channel Server monitors the “data ready” line of the serial to parallel

conversion, and launches into the first comparison state just after the 64-bit channel

status bus is updated. It has a four bit register which stores the last known state

of the channels. During the first monitoring state, it compares the zeroth bit of its

input bus with the zeroth bit of the channel status register. If the two are different,

it raises the write enable of a FIFO, which stores a two bit channel ID, the transition

(1 for 0-to-1, 0 for 1-to-0). At the moment that the FIFO writes the event, the state

machine is already in the next state, comparing the status of the next channel. As an

example of typical operation, consider a case where channel 15 goes high for 2 µs at

time 10 (0X0000000A).6 The bus clock period is 100 ns, so there will be 20 full checks

of channel 15’s status before it goes low. At the first presence of a 1 in the data bit

for channel 15, the state machine will write [11,1,0000000A] to the FIFO. When the

channel falls at time 30 (0X0000001E), the state machine will write [11,1,0000001E]

to its FIFO.

6The state machine itself sees channel 15 as channel 3. The first state machine truly has channels
0 through 3, the second state machine has 4,5,6,7 which it sees as 0,1,2,3, and so on.

35



At this point in the design there are 16 channel monitors each having a FIFO

to which it writes data. These state machines collectively monitor all 64 channels.

“Fifo server.v” monitors the status of each of the 16 FIFO’s, and reads each of their

contents into a master FIFO, which is in turn emptied by the output controller. The

different channels in the small FIFO’s are distinguished with an additional five bit

channel tag (5 bits + 2 bits in the FIFO= 128 channel IDs). The FIFO’s are each

equipped with “some”, “many”, and “full” flags. The “some” flag is true whenever

the FIFO is not empty. The “many” flag is true whenever the FIFO is half or more

full, and the “full” flag is true when the FIFO is full. When none of the “many” flags

are true, the server loops over each FIFO, reading out a single event if there are any

to be read. If one or more “many” flags are high, the server skips over any FIFO’s

which only have a “some” flag, and completely empties those which have a “many”

flag. If there is more than one “many” flag, the server will empty the first one that it

finds and skip over “some” FIFO’s until it finds and empties the remaining “many”

FIFO’s. The “some” FIFO’s are still read out after all “many” FIFO’s are empty, and

no data is lost unless a FIFO is overrun.

3.4.4 Output controller

Inserting a FIFO between the input and output stages effectively divides them into

distinct blocks which are not synchronized. If the input block has no data, it writes

nothing to the FIFO. If the FIFO is empty, the output controller waits in an idle

state, ready to send data to the DAQ. The output controller performs four main

tasks: it reads data from the FIFO when the FIFO is not empty, it divides the data

up into packets that the NI6534 can handle, it sends these packets to the NI6534, and

performs error handling if there is a problem with either the FIFO or the NI6534. It

performs all of these tasks in one finite state machine called output ctrlr.v (Appendix
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Correct 1 2 3 4 5 6 7 8

Error 1 2 3 X 5 6 7 8

Result 1 2 3 5 6 7 8 9

Table 1: Diagram showing how data corruption occurs. Event 4 was lost by the
NI6534, causing a shift in the data. For example, what is really the time stamp of
one event could be interpreted as the channel ID of the next event.

B.7).

Packet Creation in the Output Controller The NI6534’s data bus is 16 bits

wide, while the event length in the ROC is 40 bits.7 Therefore it is necessary to package

the data into three packets of 10, 15, and 15 (the 16th bit of the bus is reserved for

error codes). These packets must then arrive in succession at the NI6534 in order for

them to be reassembled into the correct event. A missed packet corrupts all of the

data in the file following the corruption. (See Table 1.) Therefore, it is important to

send out codes that subsequent software can look for to synchronize with the start of

an event. It is too wasteful to send a code signaling the start of every event. Rather,

an error code is sent out when the state machine starts (0XAAAA), any time that

there is an error in the communications protocol between the ROC and the NI6534

(0XBBBB), and if the FIFO gets overrun (0xCCCC).8 Note that the 16th bit is high

for all of these words.9 Since it is possible for the time stamp to have any of these

values in both the high and low two byte packets, the 16th bit is reserved only for

error codes, and the 40-bit data packet is split into 10, 15, and 15 bit packets. In this

way it is impossible for a time stamp to appear to be an error code. During normal

operation, the output controller reads the FIFO by strobing the FIFO RD port of the

FIFO. This causes a new event to appear at the FIFO output. The output controller

7There are 7 bits for 128 channels or 2 PMFE’s, 1 transition bit, and 32 time bits for roughly 7
minutes of operation without a repeat time stamp

8For a brief description of hexadecimal notation, see Appendix A.
9A word is a string of digital numbers
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Data Bus Interpretation

AAAA Start Error Code
0123 Bits [15:0] of first event
4567 Bits [31:16] of first event
89AB Bits [47:32] of first event
CDEF Bits [63:48] of first event

Table 2: Diagram showing the first event to be read out. Note that all digits are in
hexadecimal format. (See the Glossary for an explanation of hex notation.)

then loads the 40-bit word into its shift register. As it loads the 40-bit word, it inserts

two zeros between bits 14 and 15 and between 28 and 29, so that the high bit of every

16-bit packet is zero, in compliance with the error code rule. The lowest 16-bits of the

shift register are also the output bits. The output controller attempts to send these

bits. After successfully sending them, the output controller shifts the contents of the

shift register down by 16 bits, overwriting the word that was just sent out with bits

[31:16], and leaving bits [41:32] empty. This continues until all three packets have

been successfully sent (See Table. 2). If there is an error during this process, the

event is not dropped. After having serviced the error, the output controller reloads

the same event from the output of the FIFO (this time not strobing the FIFO RD

line), and attempts to shift out the entire event again. The only exception to this is

when ACK is low for a long time, in which case the FIFO will fill up, in turn causing

the readout controller to issue a FIFO error code. See Fig. 3 for a diagram of normal

error handling.

Error Handling in the Output Controller When an error (such as those in-

troduced above) occurs, the output controller loads the appropriate error code into

the output register, and waits until it is able to send it to the NI6534. In the case

of ACK falling (see section 3.5.1), an ACK error is registered when ack is low during

the rising edge of the fast clock (50 MHz). There are two other error codes, both of
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Data Bus Interpretation

AAAA Start Error Code
0123 Data
4567 Data
BBBB ACK ERROR–send same event again
0123 Data
4567 Data
89AB Successful transfer of event

Table 3: Diagram showing error handling. When an word is corrupted, an error code
is sent out, and the whole event is sent again. Note that all digits are in hexadecimal
format.

which take precedence over the ACK error code. The first is the start code, signaling

that the state machine has just come out of reset, and is sending its first event. The

second error code signals a problem in the data acquisition software. It is the FIFO

overrun word, which means that so much data came into the ROC that the FIFO

couldn’t store it all, and that it had to be erased. If the DAQ is working properly,

this condition should never be encountered.

Handshaking in the Output Controller The NI6534 has specific setup- and

hold-time requirements that must be obeyed for data transmission to be successful.

(See Fig. 12 for an example of fully synchronous handshaking and Ref. [20] for the

timing requirements of the NI6534.) An example of a setup time is that data must

be present and stable four ns before the rising edge of the clock [20]. A hold time is

the same concept, except that it applies to the amount of time after the rising edge

of the clock. The output controller makes sure that these setup and hold times are

obeyed, and that it raises REQ and places data on the bus at appropriate times. (See

Appendix B.7 for the complete source code for the output controller.)
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3.4.5 Calibration Controller

Originally it had been planned that the DAQ PC would control both the readout of

data with the NI6534 and the injection of charge for calibration pulses via GPIB. This

proved to be a problem because the synchronization between the two buses is limited

to 15 ms in either direction.10 This low and unpredictable rate limited data gathering

to a few hundred Hertz. It was decided that it would be much better to have the

FPGA trigger the pulses, and to add two handshaking signals to the system. Extra

digital lines on a NI6703 Digital to Analog Converter (DAC) card were converted to

LVDS on a lab-built PCB. One line is from the DAQ to the ROC, and the other is

from the ROC to the DAQ. An asynchronous handshaking protocol is used to signal

the FPGA to start accepting data. The ROC raises its line when it is finished pulsing

and reading out its data to the DAQ. The two lines are named “start” and “done,”

respectively. “Pulse Handler.v” serves as a master controller, and handles the reset

states of the zero suppression, FIFO, and output controller blocks. The master reset

line still controls the clock tree, which in turn controls the resets of the serial to parallel

conversion and calibration controller blocks. When Pulse Handler receives the start

strobe, it lowers the reset line of the zero suppression, FIFO, and output controller

blocks. It then waits for them to synchronize and become idle. After this wait, it

sends a trigger to the pulser via an LVDS line. It then waits 409.6 µs for the analog

electronics to fully integrate the charge. It then waits until all of the inputs are low,

the FIFO’s empty, and the output controller is idle. Then it polls a jumper on the

Proto Board. If the jumper is set (i.e. the value is 0), then it repeats this process 99

times. If the jumper is not set, or if the counter that counts the number of pulses is

at 99 (100 pulses sent), the controller forces the blocks under its control to reset. It

then raises the “done” line and waits for the DAQ to lower the “start” line. Once the

1015 ms is an empirically derived and very approximate number. It is, however, several orders of
magnitude above that which is needed, making a precise measurement unnecessary.
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“start” line is low, the controller waits for the next “start” in the idle state. There

is another jumper which can be set to have the ROC run in a “normal” mode, where

the ROC begins taking data from the PMFE when the “start” line goes high, and

stops taking data when it is lowered. This mode is used for taking noise data with no

calibration pulses or calibration data with a radiation source. There is no trigger for

particle events; (zero suppressed) data is simply read out to the DAQ as it comes in

from the PMFE.

3.5 The NI6534 Data Acquisition PCI-Card

The PTSM project decided that it was not cost effective to design and build a custom

DAQ card, and instead purchased a ready made card with existing driver software.

The NI6534 is capable of transferring up to 32 bits at up to 20 MHz for short periods

of time, which is a higher throughput than Firewire or USB 2.0, yet with a much

simpler protocol.

3.5.1 Fully Synchronous Handshaking

The National Instruments PCI-6534 is a 5V CMOS Digital input/output PCI card

with 32 bidirectional data lines and six control lines. It is capable of acquiring data in a

number of protocols, the most reliable and robust of which is called fully synchronous

handshaking (FSH). One can make an analogy to FSH with a water balloon toss.

Nobody wants to drop the balloon. Every throw of the balloon counts. If a thrower

wants to initiate a toss, (s)he makes sure that the sender is ready by calling out. If

the sender is not ready, nothing happens; otherwise the toss occurs. The same is true

of FSH. The PC (the receiver) has control of a line called ACKnowledge. Any time

ACK is high, the ROC is free to send data. The ROC might not always be ready,

however, so it has a control line called REQuest. When ACK is high and REQ is high,
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the PC will latch whatever is on the data bus at the next rising edge of the clock sent

by the ROC. Figure 12 shows the timing diagram for this process. Note that the card

is limited to certain period, setup, and hold time constraints that must be obeyed in

addition to the handshaking protocol [20].

Figure 12: NI6534 timing diagram

3.5.2 Readout Software

Getting the data latched into the NI6534 is only half of the process of data acquisition.

Events are 40-bits wide in the ROC, but the data bus is only 16-bits wide (32-bits

total, 16 are reserved for another FPGA).11 This means that 3 packets need to be

made from the one 40-bit event. Using these error codes and knowledge of the packet

structure, University of California, Santa Cruz physics undergraduate Jason Heimann

wrote a C++ program which interfaces to the card. The program, PTSM CALIB uses

National Instruments C libraries to initialize the NI6534, to initiate read operations

by the card, and to read the card’s RAM. The program then parses the file, looking for

11There are 32 bits for the time, seven bits for the address, and one bit for the transition.

42



error codes and reassembling the packets. When an error code is found, the current

event that is being parsed is thrown out, and the first word after the error code starts a

new event. It then turns this data into separate events for each channel that is active.

Finally, using ROOT libraries [21], the data is stored with very high compression

(∼X30) into an NTuple. This NTuple is then easily transported and analyzed on

other machines. (For the source code to PTSM CALIB, see appendix E.)

3.6 The PTSM Translator Board

One drawback to using the NI6534 is that it cannot interface with LVDS logic levels.

A translator card was designed to make communication possible between the ROC

and the NI6534.

3.6.1 Differential signaling

The Low Voltage Differential Signalling family (LVDS) is used extensively in PTSM.

At first it is not easy to comprehend why it would be used. It is differential, so it uses

twice the wires; it is expensive (more than 10 times that of CMOS); and one cannot

directly interface it with most equipment or parts.12 The reason that CMOS (or any

single ended logic family) is inappropriate for use in mixed signal systems (analog and

digital on the same board) is because ground has a finite (non-zero) impedance. When

a CMOS signal switches from 0 to 3.3 or 5 V, current rushes into or out of ground.

Depending upon the rise time of that signal, very high frequencies are forced into

ground. The dominant parasitic effect is inductance, with an impedance Z = iωL,

causing a level shift of < Vinterference =< I > ωL. This causes the voltage level

of ground to oscillate. These oscillations can ripple from the ground plane into the

analog ground plane (they are always tied at at least one point), causing it to oscillate

12A typical LVDS to CMOS translator is ∼$3, while a typical 74HC part is ∼$.25.
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as well. Since the signals of interest here are typically ∼10,000 electrons, a small shift

in voltage across the input capacitance can create a large spike in charge. This makes

it nearly impossible to take measurements of quality.

What makes differential signals immune to these shortcomings is that as one wire is

pulling current out of ground, the other is pushing current in. If the wires are correctly

matched for impedance (in a voltage source), the currents will exactly cancel.

In 1994, National Semiconductor developed a new family called Low Voltage Dif-

ferential Signaling (LVDS) which improved all of these shortcomings [22]. It runs

on a single, positive supply and uses very little power (no bipolar technology) [22].

Additionally, the outputs are currents, not voltages, so the net current into ground is

always nullified. Because its noise immunity is so good, it can afford to switch on very

narrowly defined noise margins, running at 3.5 mA across 100 Ω dissipating only 3.5

mW (in contrast to 75 mA and 285 mW per channel in ECL, a competing differential

logic family) [22]. There are drawbacks to using LVDS over CMOS. One is that it

uses twice the wires, and it uses considerably more quiescent power. There is no qui-

escent power dissipation in CMOS, and only CloadV
2
hi−lowf is burned in switching. In

PTSM, LVDS is used for all data, clock, and control lines between the PMFE, ROC,

and Translator Board.

3.6.2 Design of Translator Board

It was clearly necessary to use LVDS for all digital communication to and from the

PMFE and ROC for acceptable analog performance. Therefore it was necessary to

make a converter card that would switch between LVDS going to and coming from

the ROC and 5V CMOS going to and from the NI6534. Although the overall system

design is trivial (one chip does the entire conversion), keeping the interference from

the CMOS from adversely affecting the ROC and PMFE is slightly more difficult.
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The basic conversion between LVDS and CMOS was accomplished with three

National Semiconductor ICs. The DS90C031 is a quad CMOS to LVDS chip that

uses a single 5V supply [23]. It is used for sending the ACK signal to the ROC. The

DS90C032 is an LVDS to CMOS converter that is used to send the 16 data lines and

REQ signal to the NI6534 [24]. The DS90C401 is a bidirectional LVDS driver which is

used to supply the clock [25]. At the time of the layout it was unclear whether it was

better to use the NI6534 clock or one supplied by the ROC, so flexibility was added

in.

In order to reject common-mode noise from the CMOS lines, two strategies were

used. Pulse T8008 common-mode chokes were used to isolate all LVDS signals. A

common-mode choke is a coil with two different windings. When a truly differential

signal is passed, the B-fields null, and there is no back-EMF. When there is a common-

mode signal, the inductance of the choke presents a high impedance. The second

strategy was to split the ground plane between the input and output section of the

chokes, so that all CMOS was referenced to one ground and all LVDS to another. The

grounds were then tied at one point in the circuit. Standard IC bypassing techniques

were used, on the five volt line, supplied by the NI6534. Fig. 13 shows the completed

Translator Board. The single-ended CMOS lines are fed via the blue and black cable

directly to the PCI based NI6534. The 3M-type ribbon cable connects the Translator

board to the ROC via the Proto Board.

3.7 External Lab Equipment

Two AMREL power supplies power the instrument. One supplies +7V to the Xilinx

Proto Board, which in turn regulates and supplies 3.3V, 2.5V and 1.5V to the FPGA.

The other supply is +/- 5V for the instrumentation amplifier and the CMOS switches

for the calibration. A Keithley 237 High Voltage Source sets the 100V bias voltage
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on the detector. The voltage is carried to the board on twisted pair wire. The wire

is choked with ∼20 turns on a large ferrite, is current-limited with a 1 MΩ resistor,

and bypassed with a 47 µF X7R capacitor. The filter’s -3dB point is well below 1Hz,

and is implemented on the Test Board in close proximity to the detector. A LeCroy

Pulse Generator, controlled via GPIB, provides the calibration pulses. The signal is

first attenuated by 55 dB before entering the Test Board to allow for more precision

in charge injection.
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Figure 13: Photo of the Translator Board.
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4 Characterization

The data and analysis reviewed in this section is an examination of the first attempt

at characterization of a prototype PTSM. Three separate rounds of testing were con-

ducted. The first test sought to characterize the noise and analog gain of the front-end

electronics. The analog gain is the ratio between the peak height of the output pulse

and the input charge. The noise is defined as the standard deviation of the input

charge [15]. The gain and noise are important figures of merit because they place

lower bounds on signal resolution and measurement. The second round of testing

sought to verify the TOT gain. The TOT gain differs from the analog gain in that it

is a measure of the length of the output pulse, whereas the analog gain measures the

peak height. The TOT is an important parameter to understand because it provides

the charge measurement that is recorded by the DAQ. The third test sought to verify

the accuracy of both tests by imaging a 90Sr radiation source. This is an important

test, because it provides feedback on both the instrument and the calibration and

testing methods.

4.1 Determination of the Analog Gain and Noise of the PMFE

One way of measuring the gain is to set the comparator in the PMFE at a known

threshold voltage, and to slowly increase the charge. If there were no noise in the

system, one would expect that for all charges which produce a shaped output less

than the threshold, there would be no signal, since the comparator would never go

high. Conversely, for all charges which produced a signal greater than the threshold,

the output would always go high (See Fig. 14). This behavior would be shown as a

step function when plotted with occupancy

Occupancy ≡ Number of Events Above Threshold

Number of Identical Charges Injected
(23)
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on the y-axis and charge on the x-axis. Since there is noise in the system, a different

behavior is observed. Consider an event where the noiseless signal falls just short

of firing the comparator, and just at the peaking moment of this event, a few extra

electrons of noise are added to the signal, putting it just above the comparator voltage.

This would cause an event to be recorded, even though the signal was not sufficient in

magnitude to cause the event alone. This behavior occurs much less frequently very

far from the rising edge of the step function than at the rising edge itself. This causes

an s-curve type shape, shown in Fig. 15.
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Figure 14: Idealized response curve to varying charge input.

The 50% point of the s-curve corresponds to the transition point in the ideal system

where the shaper output just touches the threshold voltage. By finding this point, one

can measure the height of the pulse for a given charge input. The width of the s-curve

gives a direct measurement of the noise, assuming that the noise is Gaussian. S-curves

have a related Gaussian distribution, and the standard deviation of the corresponding

Gaussian is a convenient measure of the noise. The rate of transition in the s-curve

corresponds directly to the width of the corresponding Gaussian.
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To understand why error functions (s-curves) give information about Gaussian

behavior, it is helpful to remember that the value of an error function can be generated

by integrating a Gaussian from infinity to X. The error function is zero at infinity,

reaches .5 at the mean of the Gaussian, and approaches 1 at negative infinity.13 By

measuring pulse occupancy (the percentage of input pulses which cause a response

at the output) for increasing amounts of charge, one is effectively keeping X (the

threshold voltage) fixed and varying the mean. (Increasing charge results in more

pulses being above threshold, thereby “integrating” more of the Gaussian). If this

integration is performed at infinitesimally small increments over all space, an error

function is formed.

To find one point in the gain curve, 500 pulses were sent into the front end electron-

ics for each of 20 increasing charges, picked to frame the 50% points of the s-curves.

The occupancy was computed at each point (i.e. num hits
500 ), forming s-curves starting

13This is technically the complementary error function, which is 1 - the error function. For the
purpose of this discussion they can be treated identically.
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Figure 15: Average response of a comparator with Gaussian noise superimposed on
the input charge.
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at 0 and approaching 1 at high charge inputs. This process was performed for 15

thresholds between 60 and 210 millivolts (or between .63 and 2.2 fC).

4.1.1 Experimental Method

In order to find the gain and noise of the PMFE, an automated method of control-

ling threshold voltage and charge injection is needed to gain statistical results. The

threshold is set by an AMREL programmable power supply via GPIB. It is updated

by the data acquisition software (PTSM CALIB) as it takes data. (See appendix E

for the complete source code.) A pulse generator, also controlled by the DAQ through

GPIB (but triggered by the ROC), pulses input capacitors on the chip with a voltage

step. Since Q=CV, the charge injected into the amplifier is simply the product of the

calibration capacitance and the pulse amplitude. (The pulse is long enough that the

full C*V amount of charge is fully measured.) The DAQ software steps through a

set of pulse amplitudes for a given threshold, and records the digital output from the

ROC via the NI6534. PTSM CALIB parses the output from the ROC, looking for

error codes and assembling the packets into full events. The events are then written

to a ROOT NTuple for later analysis.

Once the data are collected, the s-curves are fit to error functions, and the related

(Gaussian) means, standard deviations, and their errors are obtained. Given these

values, an estimate of the gain and the noise can be made for every curve in the set.

The gain is stated as the number of millivolts of amplifier output for 1 fC of input

charge. We obtain the gain by dividing the threshold by the 50% occupancy input

charge. We expect the noise measurements to be flat with respect to input charge

because the noise is a property of the amplifier and not of the charge [15]. Since the

amplifier will be nonlinear at some point, it is prudent to take gain measurements

for several thresholds in the area where the amplifier will operate. One can then
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derive the gain curve for the system, which yields valuable information about how the

amplifier will function under normal operating conditions. (See Fig. 17 for an example

of a gain curve.) It is important to raise only one calibration bus at a time because

the stability of the chip might degrade if all channels were pulsed at once. This is a
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reasonable limitation; it is highly unlikely that 16 particles will ever be incident on

the detector during its operation. The uncollimated beam used by LLUMC has ∼100

protons spaced evenly over several hundred ms, with an active area of more than 100

cm2. This makes the odds of having two events overlap negligible.

4.1.2 Statistical Analysis

Using the threshold value and the 50% point of the s-curve (in fC), the gain (G) for

a single threshold is computed in the following way:

G(
mV

fC
) =

Vthresh(mV )

CcalVpulse(fC)
(24)

The output of the pulse generator is attenuated by four 6 dB and one 14 dB attenu-

ators, in order to bring the pulse generators output into the appropriate range. The

calibration capacitors internal to the PMFE are nominally 50 fF. (Direct measure-

ment on chip with a precision LCR meter confirmed this value.) The final conversion

equation becomes:

G(
mV

fC
) =

Vthresh ∗ 10−3

50fF ∗ Vpulse ∗ 1
16∗5atten.

=
Vthresh

α ∗ Vpulse(50%)
(25)

α = .625 (26)

The error on the gain using the fit errors is:

σgain =
dG

dVpulse
σVpulse

50%
=

−Vthresh

αV 2
pulse50%

σVpulse
50%

(27)

The noise and the error on the noise are computed in a similar manner. The noise

(σVpulse
) is extracted from the width of the Gaussian, i.e. the standard deviation, in
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units of electrons.

Qnoisee−
= ασVpulse

(28)

The error on the noise is:

σQnoise
= ασσVpulse

(29)

Where σσVpulse
is the error on the standard deviation of the s-curve. These points are

collected for each channel for a range of thresholds. These points are then plotted for

each channel. In the case of gain, the y-axis is threshold and the x-axis is charge. The

slope of the line intersecting the points is the average number of millivolts generated

per femtoCoulomb of input charge, which is defined as the gain. The typical gain

for charge amplifiers designed by SCIPP is about 100 mV/fC. The specified gain of

the PMFE is 120 mV/fC. In the case of the noise, it is convenient to plot noise on

the y-axis and threshold on the x-axis (See Fig. 18). The line should have no slope,

because the noise should be independent of gain. The y-intercept is then the noise.

This process is repeated for the remaining calibration buses, and a chip map of gain

and noise can be produced.

4.1.3 Computation

This section describes how the analysis of the analog gain and noise was accomplished

using C programs which called precompiled analysis routines in the ROOT library

[21]. The ROOT Object-Oriented Analysis Framework was developed by physicists

at CERN to analyze particle physics data sets. Custom C code using ROOT libraries

was compiled using GCC 3.2.2 under Redhat Linux 9.0 for the purpose of determining

the gain and noise.

The program, Gain v2, first determines the correct binning for all of the s-curves.

(See Appendix C for the complete source code.) Incorrectly binning the data results in
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non-physical spikes, giving a picket-fence appearance to a physically smooth dataset

(e.g. 2 voltage steps could be in one bin, and none in the following bin). Gain v2 then

initializes several structures to aid in passing the many s-curves to different functions.

The s-curves are then fit to error functions, and the mean, mean error, standard

deviation, and standard deviation errors are stored in an array (one for each channel)

of structures of arrays (one for each fitted parameter). Coding in this style prevents

the passing of any actual values to various subroutines. Instead, addresses to the data

structures are passed, greatly reducing the total time of computation.

After the s-curves have been fit, Gain v2 makes two TGraph objects for each

channel (one for noise, one for gain), and plots the fitted parameters as a function

of input charge, using the fit uncertainties as error bars. It then fits lines to each of

these graphs and stores them in different arrays in a new structure. These parameters

(again as a function of input charge) are the noise, the noise slope, the gain, the gain
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Figure 18: Typical noise values for a range of thresholds.
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offset, and their respective uncertainties. In an ideal system, the noise slope would be

0, since it should be independent of input charge. The gain offset would also ideally

be 0, but a nonzero value does not adversely affect performance.

Finally, Gain v2 creates 2 TGraph objects, one for the chip gain and one for the

chip noise. The error bars are the fitted uncertainties. At each step, Gain v2 saves

copies of the histograms and graphs for later viewing, in case one of the channels

shows strange behavior.

4.1.4 Interpretation of Results

The first analysis of the data is in the fitting of the s-curves. A typical s-curve is

shown in Fig. 19. Overall the fits were quite good, with occasional fitting errors.
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Figure 19: Example of an s-curve from channel 42.

(These errors did not significantly affect the quality of the overall results.) Lines were

fit to the sets of s-curves to find the average gain for small signals. An example of a

typical gain curve can be found in Fig. 20.

The gain curves and associated errors are plotted in Fig. 21.
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The noise was also computed for the channels. A typical noise curve for one

channel is shown below in Fig. 22 for channel 43. The noise for the entire chip is

shown in Fig. 23. The noise is 616 +/- 24 electrons.

When repeating these tests for the Test Board with a detector mounted the PMFE
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Figure 20: Gain curve for Channel 42. The error is artificially small due to a linear
fit to non-linear data.
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oscillated to a point where the data output was non-physical. The oscillatory behavior

becomes infrequent at 125 mV (1.34 fC), but at that level it becomes very difficult to

probe the small-signal characteristics of the amplifiers. It is clear from diagnostic tests

that the digital ground of the Proto Board is coupling to the input of the PMFE. This

can be shown by running different designs on the FPGA; when a simpler design (with
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Figure 22: Noise curve for channel 43.
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very few gates, and thus fewer transitions) is running, the oscillations are significantly

reduced. Further research is being conducted to mitigate the problem so that the

PMFE can be run at a lower threshold with a detector.

The analog gain and noise give valuable information about the small signal perfor-

mance of the device. The specified gain was 120 mV
fC

, while the measured gain was 94

mV
fC

. Although the gain is not as high as planned, it will still provide a fully functional

charge measurement. The noise is well below the specification of 1000 electrons, with

a value of 616 +
−

24 electrons. This value is linearly dependent on the detector capaci-

tance due to the noise voltage at the input of the amplifier, and will increase with the

addition of a detector [27]. It was noted during analysis of the gain data that there

are several statistically significant outliers in the noise map. These include channels

5, 10, 15, etc.
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4.2 TOT Gain

The TOT Gain, or TOT calibration, is the ratio between the time that a comparator

output is high and the input charge for a given threshold. To determine the TOT

gain, the threshold is set to a single voltage well above the noise floor, and groups of

pulses of increasing charge are injected into the front end. The pulse heights gradually

increase, causing progressively longer TOTs. For one charge setting, the distribution

of TOTs should be Gaussian, due to the same noise that causes the step functions to

become s-curves when measuring the analog gain. The mean of the Gaussian gives the

average TOT for the charge injected, and the standard deviation gives the resolution

of the TOT gain on charge. Understanding the TOT resolution is very important,

because it places a limit on the precision with which the energy of the particle can be

measured. The TOT gain was studied both by observing the raw comparator output

on the PMFE using a pico-probe, and by conducting traditional DAQ-based TOT

calibration, where several pulses are injected at different charge values, resulting in a

Gaussian distribution (due to noise) for each charge step. The TOT spectra for each

pulse magnitude are fit to Gaussian functions. The mean and standard deviations are

derived from the fits, and a gain curve can be fit to these values. This function is then

used to map experimental TOTs to injected charge, which can further be mapped

to the LET of the particle. If the digital part of the PTSM is working properly, the

average comparator response measured using the oscilloscope should match the mean

of the Gaussian distribution obtained by the DAQ.

It was discovered during pico-probe measurements of the PMFE amplifiers that

the external calibration capacitors were not providing electrically sound calibration

pulses. Research is being conducted to find the source of this problem. Until the

external calibration method is functional, the gain curves will be limited in range to

∼60 fC.
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4.2.1 Experimental Method

The experimental method involved in taking TOT data is very similar to that of ana-

log gain and noise. Two different thresholds were used for the TOT calibration. The

threshold used for calibration should be the same one used in operation of the instru-

ment, because the TOT gain can vary greatly between thresholds for small charges.

The Test Board with a detector is only stable at 125 mV (∼1.25 fC) and above, so

the TOT was calibrated at that threshold. The Test Board with no detector is stable

at 100 mV (∼1 fC), and so it was calibrated at that both 100 and 125 mV. Each

calibration bus was tested separately, as in the characterization of the analog gain.

Again pulses of increasing amplitude were injected into the PMFE. The TOT signals

resulting from these pulses were measured using two methods. First, to ensure that

the analog behavior of the amplifier and comparator were correct, a pico-probe was

used to measure both the incoming calibration pulse and the comparator output (be-

fore begin digitized) for 4 unrelated channels. The calibration pulse was measured

at the bond-pad where the calibration pulse enters the chip. This ensured that any

inaccuracies in the pulser or attenuators would be accounted for. The comparator

outputs were measured at special probe pads that were included for debugging on

seven of the channels. Channels 1, 4, 10, and 15 were tested. (None share a cali-

bration bus.) The output of the pico-probe was fed to a Tektronix 4195A digitizing

oscilloscope. While triggering on the pulse generator’s trigger signal, the comparator

output was averaged 128 times. The result of this averaging can be seen in Fig. 24.

The TOT was measured with the cursor function on the oscilloscope between the 50 %

points of the rising and falling edges. Two ranges of charge were studied: (1.56-15.63

fC), hereafter referred to as “low-range”, and (6.25-62.5 fC), hereafter referred to as

“high-range”. An example TOT gain curve can be seen in Fig. 25. Both ranges were

swept in ten steps. The error of the measurements is estimated to be 10 ns, based
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upon repeated measurements of a single waveform. Both the detector mounted and

unmounted configurations of the Test Board were characterized by this method. After

having characterized the analog output of the comparators, the full PTSM DAQ was

used to characterize the TOT gain.

The TOT gain was measured by the DAQ in one trial at 125 mV for the range of

6.25-62.5 fC and at 100 mV for the range of .5-2.75 fC using the Test Board with no

detector mounted. PTSM CALIB was used to sweep the charge range in ten steps.

One thousand pulses were injected at each charge step.

4.2.2 Statistical Analysis

The characterization of the TOT using the averaging function on the oscilloscope

yielded several measurements of the average TOT for two ranges of charge. These

Figure 24: A typical oscilloscope display of the averaged comparator response to an
input charge.
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Board V Thresh Q=(1-15 fC) Q=(6-63 fC)
Conf. Gain( µs

fC
), Offset(µs) Gain( µs

fC
), Offset(µs)

Calibration 100 mV .315, 1.08 .215, 2.06

Calibration 125 mV .300,.835 .200, 1.81

Detector 125 mV .4, 1.19, .21, 3.34

Table 4: Results of the comparator based method of TOT characterization. The
computed error on these figures is artificially low due to fitting a line to non-linear
data.

TOT’s were then fit to lines, and the average behaviors computed. The DAQ-based

method of TOT gain measurement yielded ten Gaussian distributions for each chan-

nel. Gain and resolution curves were then fit to the resulting means and standard

deviations. These were then averaged to give a chip-wide measurement of the gain

and resolution.

4.2.3 Computation

The program used to analyze the comparator-based TOT calibration, COMP GAIN,

can be found in Appendix F. COMP GAIN stores the data in arrays, and fits lines

to each curve using ROOT fitting and graphics libraries [21]. The curves and fits

are saved to postscript files for later viewing. The parameters from each fit are then

printed to stdout. The output from this program can be seen in Appendix F.1. A

sample gain curve is shown in Fig. 25. Table 4 shows the results of the fits.
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Figure 25: A typical gain curve from the comparator-based method of TOT calibra-
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The architecture of the DAQ based TOT analysis program, TOT Gain v1, is very

similar to that of Gain v2, although the source files are unrelated (see Appendix D).

The ROOT libraries are extensively used for fitting, histogram, and graph methods

and objects. The first section of the program computes the correct binning, as above

in Gain v2. The second section fits Gaussian functions to the distributions, and stores

the fitted parameters and errors in an array of structures of arrays, as before. (See

Fig. 26 for a sample TOT Gaussian.) TGraphs are made for each channel, in which

the TOT is plotted on the Y-axis and the injected charge is plotted on the X-axis.

The slope of this line is the TOT gain. (See Fig. 27 for an example of a typical

DAQ-based TOT gain curve.) Again a chip wide map of TOT gain was produced
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Figure 26: A typical TOT distribution from the DAQ-based method of TOT cali-
bration. The width of the distribution is directly related to the falling edge of the
averaged comparator output in Fig. 24.

(See Fig. 28). The resolution at 4, 20, and 50 fC is plotted in 3 separate chip-wide

maps (See Figs. 29, 30, and 31).
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Figure 27: A typical TOT gain curve from the DAQ-based method of TOT calibration.
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Figure 29: Chip-wide map of the TOT resolution for 4 fC.
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Additionally, one data set was taken for small charge values between .5 and 2.75

fC. to determine the small signal TOT gain. Fig. 32 shows a typical gain curve from

this set. Fig. 33 shows a chip-wide tot gain map for the region of .5 to 2.75 fC.

As before, all histograms and graphs were saved for later analysis.

4.2.4 Interpretation of Results

Table 4 shows that the matching between the mounted and unmounted detector con-

figurations is very good, meaning that the amplifier is insensitive to input load ca-

pacitance. This is important, because different detectors have different capacitances.

The computed error of the fits to the comparator-based TOT gain data are artificially

low due to linear fits to non-linear data. Based on experience the collection of several

different sets of data, the author estimates the error on the gain to be +
−

.3, and the

error on the offset to be .2. Table 4 also shows that the variation between 100 mV
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Figure 31: Chip-wide map of the TOT resolution for 50 fC.
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Figure 32: A typical TOT gain curve for the charge region of .5 to 2.75 fC.
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and 125 mV in threshold is negligible at charges greater than ∼ 10 fC. The linear fits

are not meant to exactly map the behavior of the TOT (as should be done channel-

by-channel when the system is used in the field), but rather to characterize the large

scale behavior of the instrument. Because of this, the offset in gain is normal and

expected.

The DAQ-based TOT calibration matches very closely the values obtained above,

with an average gain of .21 +/- .03 µs
fC

and an offset of 1.26 +/- .30 µs. These

values both agree very closely with the data taken in [3], which show a gain of .20

µs
fC

and an offset of .50 µs. The DAQ-based TOT calibration further shows that

the resolution on charge is constant, measured at .22 +/- .08, .23 +/- .06, and .23

+/-.05 µs for charges of 4, 20, and 50 fC, respectively. This width is very small,

especially considering that the bin width used for the data gathering is .1 µs, due

to the effective sampling rate of 10 MHz. It has been previously thought that the

outliers of the resolution curve (channels 5, 10, etc.) were the result of errors in the

fitting routines or statistical fluctuations. But on comparison with the noise map of

the previous section, composed from completely unrelated data and source code, it is

clear that increased TOT resolution is highly correlated with noise. (Compare Fig. 23

with Fig. 30.) Further investigation is being conducted into the causes of this effect.

The three characterizations of TOT to date (the first being in [3]) consistently show

that the TOT gain is .2 µs
fC

for the charge range of 10 - 60 fC, which is close to the

specified value of .1 µs
fC

.
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4.3 Radiation Source Measurement

The final test performed in the characterization of the prototype readout system of

the PTSM was to place a Test Board with a detector mounted on it in the presence of

a radiation source. Strontium 90 has two β spectra, one at .546 MeV and one at 2.283

MeV [26]. In the first trial, an uncollimated 100 µCi 90Sr source was placed within

1 cm of the detector. Data was taken for one minute. The intensity map is shown in

Fig. 34. The combined TOT spectrum for all channels is plotted in Fig. 35. For the

second trial, a 1 cm X 50 µm collimator was used to collimate the source. Data was

then taken for 30 minutes. The slit was aligned by trial and error along the major axis

of the strips in the center of the active area. Because the rotational angle of the slit is

ill defined, little quantitative information about the beam can be determined from the

intensity map (Fig. 36), although it is likely that the dominant causes of the width

are multiple-scattering and beam divergence. Nonetheless, it is reassuring that a very

well defined peak is present in the center of the chip. The TOT spectrum (Fig. 37)

matches the spectrum obtained in the previous trial. No software has been developed

to combine events where charge was shared between strips. Because of this, there are

many TOT events in the spectrum which show half or less of the actual amount of

charge deposited. For example, if a particle hit between two strips, and shared charge

equally between them, the two resulting TOTs would not represent the total amount

of charge due to one electron. These multiple-strip hits at lower TOT’s occlude the

other spectra which exist in addition to the Landau distribution. When the charge

from a particle is measured correctly, the charge (and thus the TOT spectrum) should

follow a Landau distribution [26]. As a first approximation, a Landau curve was fit

to the data to provide the mean TOT for the spectrum. The mean of the Landau

distribution is .61 µs. To find the amount of charge deposited, this value can be
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Figure 34: Intensity map for data taken with uncollimated 90Sr source. Note that
channels 0 and 63 were poorly behaved, and so they were cut from the histogram.
There are two dead strips, channels 6 and 15.
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Figure 35: TOT spectrum for the uncollimated 90Sr source measurement.
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Figure 36: Intensity map for data taken with the collimated 90Sr source. Note that
channels 0 and 63 were poorly behaved, and so they were cut from the histogram.
There are two dead strips, channels 6 and 15.
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Figure 37: TOT spectrum for the collimated 90Sr source measurement.
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substituted into the linear approximation for the TOT gain at low charge:

TOTµs = A
µs

fC
QfC + Bus (30)

Where A is the TOT gain (.7 µs
fC

) and B (-.13µs) is the TOT offset.

Q =
TOT − B

A
(31)

The mean charge deposited by the 90Sr β source is ∼ 1 fC. It is reasonable to assume

that the mean of the TOT distribution occurs at the energy where electrons are just

stopped, because of the nature of the Bethe-Bloch relation [26]. This energy can be

found by consulting electron range tables in [28]. The range is given in g
cm2 . The

density of silicon is 2.3 g
cm3 [29]. Given that the detector is 300 µm thick, the range

is:

range = ρl = 2.3 ∗ .03 = .069
g

cm2
(32)

The energy corresponding to an electron just being stopped in the silicon is ∼ 225

keV[28]. Using aforementioned constants, the charge deposited is:

Qdeposited =
Ekinetic

3.6 eV
e−

1.602 ∗ 10−4 fC

e− = 10.01fC (33)

The value of 10 fC is similar to that of the measured charge (1 fC). A Monte-Carlo

study of the radiation source is needed to more accurately predict the charge deposited

in the detector. This measurement shows that the PTSM is a functioning instrument,

and that the characterization of the analog gain and TOT gain are reasonable.
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4.4 Conclusion

The purpose of this section was to characterize the analog gain, noise, and Time Over

Threshold (TOT) gain, and to verify these results by imaging a 90Sr radiation source.

The two measurements of the TOT gain agree very closely with previously published

data in [3]. The TOT resolution is very low (fine) and appears to be relatively constant

in the region from 10 to 60 fC. Additionally, reasonable spatial and energy deposition

data was obtained when imaging a 90Sr β source. The data in the preceding sections

shows that the prototype readout system for the PTSM is a functional instrument,

with the following characteristics (Table 5):

Parameter Method Experimental Value Specified Value Units

Analog Gain DAQ 93.9 +
−

.55 120 mV
fC

Noise DAQ 616 +
−

24 <1000 e-

TOT Gain SCOPE .200 +
−

.00 .1 µs
fC

TOT Gain Offset SCOPE 1.81 +
−

.01 NA µs

TOT Gain DAQ .21 +
−

.03 .1 µs
fC

TOT Gain Offset DAQ 1.26 +
−

.30 NA µs

TOT Resolution (4-50 fC) DAQ .23 +
−

.07 .08 µs

Source Measurement DAQ 8.86 +
−

.38 10.01 fC

Table 5: Summary of the characterization of the PTSM system. The TOT gain results
listed are for the 5-60 fC region at the 125 mV threshold. The noise measurements
were taken without a mounted detector.
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5 Conclusion

This paper discussed the design, implementation, and characterization of a prototype

readout system of the Particle Tracking Silicon Microscope (PTSM). Radiobiologists

at Loma Linda University Medical Center are studying the effects of ionizing radiation

on living tissue. An instrument is needed which can correlate particle tracks with

specific cells. Using this information, detailed and precise models of the effect of

radiation on tissue can be developed and adapted to cancer therapy and prevention.

A prototype readout system was designed and implemented at the Santa Cruz Institute

for Particle Physics. This paper described and analyzed the characterization process

of this prototype. The preliminary results of both calibration and radiation-source

tests indicate that the PTSM will be able to detect fast protons and heavy ions with

excellent charge resolution and spatial resolution on the order of a cell nucleus. These

measurements will aid radiobiologists in solving complex problems in cancer therapy.
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A Glossary

ASIC: Application Specific Integrated Circuit.

asynchronous logic: Logic which does not wait for a clock edge to transition. Asyn-
chronous logic may or may not have memory.

bit: Bit stands for Binary Digit. Most digital systems use bits to convey information.
A bit is either TRUE(1) or FALSE(0).

bus: a group of signals that are logically associated. It is common to call the first
signal bus[0], the second signal bus[1], etc.

byte: two nibbles or eight bits.

binary Notation: The binary number system uses 2 as a base instead of 10. A
binary number 1010 stands for 1 ∗ 23 + 0 ∗ 22 + 1 ∗ 21 + 0 ∗ 20 = 1010

differential: A signal which travels on two wires. One signal is the complement on
the other. They do not need to have a ground reference.

double data rate (DDR) Data is latched on both the rising and falling edge of the
clock. Twice the normal amount of data is transferred for a given clock rate,
thus the name.

event: In the context of PTSM, an event occurs when a comparator output transi-
tions either from low-to-high or high-to-low.

flip-flop: A flip-flop is based on the most fundamental unit of memory, the latch.
The simplest flip-flop has two inputs (clock and D) and one output (Q). When
the clock input rises from 0 to 1, the flip-flop assigns the input to the output,
and keeps the output at that value until the next rising edge of the clock.

hexadecimal Notation: Hexadecimal notation represents a nibble as a number from
0-15, as 0-9 and A-F. For example, 10102 = 1010 = A16.

latch: A latch is the most fundamental unit of memory. The most important dif-
ference between a latch and a flip-flop is that a latch is asynchronous, while a
flip-flop is synchronous. An SR latch has two inputs (SET and RESET), and
an output (Q). When SET goes high, the output goes high until RESET goes
high. Then the output is low until SET rises again.

mixed-signal design: A single circuit board or ASIC which has both analog and
digital signals on it.

multiplexer A combinatorial logic device with (at minimum) two inputs, a select bit
(or more for more than 2 inputs), and an output. A two input multiplexer with

77



inputs A and B might express the value of A if the select bit were high and B if
the select bit were low.

nibble: four bits.

register: One or more flip-flops in a logical array.

skew: The difference in arrival time between two paths of one signal that originate
in the same location but differ in destination.

single-ended: An electrical signal which travels on one wire, with a potential refer-
enced to ground.

synchronous logic: Logic units which have memory, and only change state on a
clock edge.

Verilog: Verilog is a Hardware Descriptive Language (HDL), which in Syntax appears
very close to C [30]. For example, an OR gate with inputs A and B and output
C would be implied with: assign C = A — B. An AND gate with the same
inputs and outputs would be implied with: assign C Ā & B. a flip-flop with
input D and output Q is only slightly more complicated:

Reg flop; //one must declare a register

//(there are no formal flip-flops in Verilog

Always@(posedge clk)

//every time the positive edge of the clock

//arrives evaluate this

Q<=D; //assign the value of the input to the output
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B PTSM Readout Controller Verilog Source Code

/*********************************************************************

* PTSM_READOUT_V4_0.v--top level readout for pmfe chip.

* Conventions: d is input

* q is output

* name_ is active low signal

* name_i denotes single ended version of a signal

*

* Brian Keeney, 6/10/04

* Copyright 2004 University of California, Santa Cruz

* Santa Cruz Institute for Particle Physics

* Natural Sciences 2, 1156 High St. Santa Cruz, CA 95064

*********************************************************************/

module PTSM_RDOUT_V4_0(qp, qn, clk_data, fe_clk,

daq_clk, dp, dn, clk_in, res_, req,

cal_out, cal_in,pulse_jumper,

cal_jumper, pulse_start,

pulse_done, frame, ack);

output [15:0] qp, qn;

output [3:0] cal_out;

output [1:0] clk_data, fe_clk, daq_clk,

req, pulse_done, pulse_trig_out;

input clk_in, res_, pulse_jumper, cal_jumper;

input [1:0] ack, pulse_start;

input [2:0] frame;

input [7:0] dp, dn;

input [3:0] cal_in;

assign cal_out = cal_in;

reg [15:0] din; //DDR IOB registers

wire [7:0] d; //lvds out from chip

wire [63:0] q_ser;

wire [39:0] fifo_dout;

wire [15:0] dout;

wire clk, fifos_full, ctrlr_idle;

//synthesis attribute buffer_type of clk is BUFG
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// synthesis attribute IOB of din is true;

always@(posedge clk) begin

din[15:8] <= d;

end

always@(negedge clk) begin

din[7:0] <= d;

end

clk_tree clk_tree(

.fe_clk(fe_clk_i),

.clk_data(clk_data_i),

.slow_clk(slow_clk),

.slow_clk_bufg(slow_clk_bufg),

.clk_in(clk_in),

.clk(clk),

.res_out(res),

.res_(res_)

);

ser_2_par_v4 ser_2_par_v4(

.din(din),

.dout(q_ser),

.data_ready(data_ready),

.slow_clk(slow_clk_bufg),

.clk(clk),

.res(res),

.frame(frame)

);
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pulse_handler pulse_handler(

.done(pulse_done_i),

.trig(pulse_trig_out_i),

.res_fifos(res_fifos),

.start(pulse_start_i),

.some_flag(some_flag),

.pulse_jumper(pulse_jumper),

.cal_jumper(cal_jumper),

.ctrlr_idle(ctrlr_idle),

.fast_or(fast_or),

.res(res),

.clk(slow_clk_bufg)

);

data_handler data_handler(

.dout(fifo_dout),

.bf_empty(fifo_empty),

.fifo_flag(fifos_full),

.din(q_ser),

.data_ready(data_ready),

.rd_fifo(rd_fifo),

.clk(clk),

.res(res_fifos),

.little_wr(little_wr_flag),

.big_wr(big_wr_flag),

.some_flag(some_flag),

.many_flag(many_flag)

);

output_ctrlr output_ctrlr(

.dout(dout),

.req(req_i),

.idle(ctrlr_idle),

.rd_fifo(rd_fifo),

.din(fifo_dout),

.ack(ack_i),

.fifos_full(fifos_full),

.res(res_fifos),

.clk(clk),

.fifo_empty(fifo_empty),

.daq_clk(slow_clk)

);
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//clock and control buffers

OBUFDS fe_buf(.I(fe_clk_i), .O(fe_clk[1]), .OB(fe_clk[0]));

OBUFDS clk_data_buf(.I(clk_data_i),.O(clk_data[1]),.OB(clk_data[0]));

OBUFDS daq_clk_buf(.I(slow_clk), .O(daq_clk[1]), .OB(daq_clk[0]));

OBUFDS flag_buf0(.I(flags_i[0]), .O(flagsp[0]), .OB(flagsn[0]));

OBUFDS flag_buf1(.I(flags_i[1]), .O(flagsp[1]), .OB(flagsn[1]));

//Software handshaking Buffers

OBUFDS done_buf(.I(pulse_done_i),

.O(pulse_done[1]),.OB(pulse_done[0]));

IBUFDS start_buf(.O(pulse_start_i),

.I(pulse_start[1]),.IB(pulse_start[0]));

IBUFDS ack_buf(.I(ack[1]),.IB(ack[0]), .O(ack_i));

OBUFDS req_buf(.I(req_i),.O(req[1]),.OB(req[0]));

//Data input buffers

IBUFDS din_buf0(.I(dp[0]),.IB(dn[0]),.O(d[0]));

IBUFDS din_buf1(.I(dp[1]),.IB(dn[1]),.O(d[1]));

IBUFDS din_buf2(.I(dp[2]),.IB(dn[2]),.O(d[2]));

IBUFDS din_buf3(.I(dp[3]),.IB(dn[3]),.O(d[3]));

IBUFDS din_buf4(.I(dp[4]),.IB(dn[4]),.O(d[4]));

IBUFDS din_buf5(.I(dp[5]),.IB(dn[5]),.O(d[5]));

IBUFDS din_buf6(.I(dp[6]),.IB(dn[6]),.O(d[6]));

IBUFDS din_buf7(.I(dp[7]),.IB(dn[7]),.O(d[7]));
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//data output buffers

OBUFDS buf0(.I(dout[0]), .O(qp[0]), .OB(qn[0]));

OBUFDS buf1(.I(dout[1]), .O(qp[1]), .OB(qn[1]));

OBUFDS buf2(.I(dout[2]), .O(qp[2]), .OB(qn[2]));

OBUFDS buf3(.I(dout[3]), .O(qp[3]), .OB(qn[3]));

OBUFDS buf4(.I(dout[4]), .O(qp[4]), .OB(qn[4]));

OBUFDS buf5(.I(dout[5]), .O(qp[5]), .OB(qn[5]));

OBUFDS buf6(.I(dout[6]), .O(qp[6]), .OB(qn[6]));

OBUFDS buf7(.I(dout[7]), .O(qp[7]), .OB(qn[7]));

OBUFDS buf8(.I(dout[8]), .O(qp[8]), .OB(qn[8]));

OBUFDS buf9(.I(dout[9]), .O(qp[9]), .OB(qn[9]));

OBUFDS buf10(.I(dout[10]), .O(qp[10]), .OB(qn[10]));

OBUFDS buf11(.I(dout[11]), .O(qp[11]), .OB(qn[11]));

OBUFDS buf12(.I(dout[12]), .O(qp[12]), .OB(qn[12]));

OBUFDS buf13(.I(dout[13]), .O(qp[13]), .OB(qn[13]));

OBUFDS buf14(.I(dout[14]), .O(qp[14]), .OB(qn[14]));

OBUFDS buf15(.I(dout[15]), .O(qp[15]), .OB(qn[15]));

endmodule

83



B.1 Clock Tree

/*********************************************************************

* CLK_TREE.V

*

* Brian Keeney, 6/1/04, bkeeney@scipp.ucsc.edu

*

* Copyright 2004 University of California, Santa Cruz

* Santa Cruz Institute for Particle Physics

* Natural Sciences 2, 1156 High St. Santa Cruz, CA 95064

*********************************************************************/

/*********************************************************************

/clk_tree.v- This module creates all of the

/required clocks for the design.

/Brian Keeney and Gavin Nesom, 3/4/04

*********************************************************************/

‘timescale 1ns / 1ps

module clk_tree(fe_clk, clk_data, slow_clk, slow_clk_bufg,

clk_in, clk, res_out, res_);

input clk_in, res_;

output clk_data, fe_clk, slow_clk, slow_clk_bufg, clk;

output res_out;

reg up, down;

reg[3:0] timer;

assign gnd =0;

wire dcm0locked, dcm1locked, dcm2locked, div5;

wire res_dcm0 = ~res_;

wire res_dcm1 = ~ dcm0locked;

wire res_dcm2 = ~ dcm1locked;

assign res_out = ~(dcm2locked&(&timer));

assign slow_clk = div5;

BUFG slow_buf(.I(div5),.O(slow_clk_bufg));

//synthesis attribute uselowskewlines of slow_clk is yes
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//////////////////////////////////////////////////////////////////////

/* DCM0 Deskews the input clock */

//////////////////////////////////////////////////////////////////////

//this is the feedback loop for dcm0;

BUFG dcm_0_fb (.I(dcm0_clk_0), .O(clk));

BUFG dcm_0_in_buf (.I(clk_in), .O(dcm_0_in));

DCM dcm0 (

.CLKFB(clk),

.CLKIN(dcm_0_in),

.DSSEN(gnd),

.PSCLK(gnd),

.PSEN(gnd),

.PSINCDEC(gnd),

.RST(res_dcm0),

.CLK0(dcm0_clk_0),

.LOCKED(dcm0locked));

// synthesis attribute DLL_FREQUENCY_MODE of dcm0 is "LOW"

// synthesis attribute CLKOUT_PHASE_SHIFT of dcm0 is "fixed"

// synthesis attribute PHASE_SHIFT of dcm0 is "0"

// synthesis attribute DUTY_CYCLE_CORRECTION of dcm0 is "true"

// synthesis attribute STARTUP_WAIT of dcm0 is "false"

// synopsys translate_off

defparam dcm0.CLKOUT_PHASE_SHIFT = "FIXED";

defparam dcm0.PHASE_SHIFT = 0;

defparam dcm0.DLL_FREQUENCY_MODE = "LOW";

defparam dcm0.DUTY_CYCLE_CORRECTION = "true";

defparam dcm0.STARTUP_WAIT = "false";

// synopsys translate_on
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//////////////////////////////////////////////////////////////////////

// DCM1 is just a phase shifter between the

// root clk and the FE system.

//////////////////////////////////////////////////////////////////////

//this is the feedback loop for dcm1;

BUFG dcm_1_fb (.I(dcm1_clk_out), .O(fe_clk));

DCM dcm1 (

.CLKFB(fe_clk),

.CLKIN(clk),

.DSSEN(gnd),

.PSCLK(gnd),

.PSEN(gnd),

.PSINCDEC(gnd),

.RST(res_dcm1),

.CLK0(dcm1_clk_out),

.LOCKED(dcm1locked));

// synthesis attribute DLL_FREQUENCY_MODE of dcm1 is "LOW"

// synthesis attribute CLKOUT_PHASE_SHIFT of dcm1 is "fixed"

// synthesis attribute PHASE_SHIFT of dcm1 is "64"

// synthesis attribute DUTY_CYCLE_CORRECTION of dcm1 is "true"

// synthesis attribute STARTUP_WAIT of dcm1 is "false"

// synopsys translate_off

defparam dcm1.CLKOUT_PHASE_SHIFT = "FIXED";

defparam dcm1.PHASE_SHIFT = 64;

defparam dcm1.DLL_FREQUENCY_MODE = "LOW";

defparam dcm1.DUTY_CYCLE_CORRECTION = "true";

defparam dcm1.STARTUP_WAIT = "false";

// synopsys translate_on
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/////////////////////////////////////////////////////////////////////

//This DCM controls the phase of clk_data wrt fe_clk,

// and creates the 1/5 clk

/////////////////////////////////////////////////////////////////////

BUFG dcm_2_fb (.I(dcm2_out), .O(chop_clk));

DCM dcm2 (

.CLKFB(chop_clk),

.CLKDV(div5),

.RST(res_dcm2),

.CLK0(dcm2_out),

.CLKIN(fe_clk),

.DSSEN(gnd),

.PSCLK(gnd),

.PSEN(gnd),

.PSINCDEC(gnd),

.LOCKED(dcm2locked)

);

// synthesis attribute CLKDV_DIVIDE of dcm2 is "5.000000"

// synthesis attribute CLKOUT_PHASE_SHIFT of dcm2 is "fixed"

// synthesis attribute PHASE_SHIFT of dcm2 is "-64"

// synthesis attribute DLL_FREQUENCY_MODE of dcm2 is "LOW"

// synthesis attribute DUTY_CYCLE_CORRECTION of dcm2 is "true"

// synthesis attribute STARTUP_WAIT of dcm2 is "false"

// synopsys translate_off

defparam dcm2.CLKDV_DIVIDE = 5.000000;

defparam dcm2.CLKOUT_PHASE_SHIFT = "FIXED";

defparam dcm2.PHASE_SHIFT = -64;

defparam dcm2.DLL_FREQUENCY_MODE = "LOW";

defparam dcm2.DUTY_CYCLE_CORRECTION = "true";

defparam dcm2.STARTUP_WAIT = "false";

// synopsys translate_on
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/********************************************************************

/ This section chops the 1/5 output of dcm 2 into a 1/2 incoming clk

/ duty cycle. This chopped clk is clkdata, which can be phased wrt

/ fe_clk using dcm_2’s phase shift variable.

********************************************************************/

always @(posedge chop_clk)

begin

if(res_out) up<=0;

else

up <= slow_clk;

end

always @(negedge chop_clk)

begin

if(res_out) down<=0;

else

down<= up;

end

assign clk_data= up&!down;

//synthesis attribute uselowskewlines of clk_data is true

/********************************************************************

// This section just pipelines the lock so that all the synchronous

// elements get plenty of clocks with reset high.

*********************************************************************/

//synthesis attribute uselowskewlines of timer is yes

always @(posedge clk) begin

if(!dcm2locked) timer <= 0;

else timer <= &timer? timer : {timer[3]^(&timer[2:0]),

timer[2]^(&timer[1:0]),

^timer[1:0],~timer[0]};

end

endmodule
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B.2 Serial to Parallel Conversion

/*********************************************************************

* ser_2_par_v4.V

*

* ser_2_par reads out the DDR data lines from the PMFE.

* For the data format, refer to

* scipp.ucsc.edu/~bkeeney/ptsm_files/pmfe_files/data_format.ps

*

*

* Brian Keeney, 6/1/04, bkeeney@scipp.ucsc.edu

*

* Copyright 2004 University of California, Santa Cruz

* Santa Cruz Institute for Particle Physics

* Natural Sciences 2, 1156 High St. Santa Cruz, CA 95064

*********************************************************************/

/*********************************************************************

* Theory of Operation:

**********************************************************************

* The user sets jumpers on the board for frame.

* The comparison between

* frame and timer makes it possible to change the framing between

* the front end chip and when the data from it gets latched. For

* example, an output register which should store the value of

* channel 6 might instead be storing the value of 4, or it might

* be storing the dead time (null). To remedy this, change frame,

* and all will come into alignment(eventually). If you are getting

* an odd channel instead of an even one, then you need to change

* the phase between the fe clocks and the latching clock. A

* change of 64 corresponds to 90 degrees, which is the most that

* it should be changed at any one time.

*

* Assuming that the above conditions are satisfied, ser_2_par

* operates thusly: wait_ctr counts up on the slow clock to delay

* startup of the state machine until after the glitchy first few

* clocks clear the dcms. After the wait_ctr counts up, the

* synchronization using frame occurs. The next four states just

* grab data from the DDR registers in the top layer and shift

* them into a shift register. On the fifth clock cycle of the bus

* cycle(see web for format) there is a dead frame, so that time is

* used to store the contents of the shift register in a buffer,

* which is obviously only updated every 5 clock cycles. The

* data_ready pulse is timed such that the subsequent SMs which
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* monitor this data have all the time that they need to process

* the channel statuses. If the SM ever glitches into an undefined

* state, it syncs up again in the init state.

*

* It might seem strange that the DDR FFs are in the top level.

* This makes it easier(possible?) to pack them into the IOBs,

* which makes them much faster. Note that the timing here is VERY

* critical, because we shift from 2 time domains( posedge and

* negedge) to one( posedge). Therefore, care must be taken to make

* the tools understand how the setup and hold times must be

* constrained(see .ucf). I could not find a single place

* in the whole xilinx site where it was done correctly(their way

* won’t even pass the parser). This way might not be perfect, but

* it seems to understand what we mean. This is near the top on

* the list of things to ask a xilinx engineer.

*********************************************************************/

module ser_2_par_v4(dout, data_ready, din, slow_clk,

clk, res, frame);

output [63:0] dout;

output data_ready;

input [15:0] din;

input slow_clk,clk, res;

input [2:0] frame;

reg [2:0] timer;

reg [63:0] SR, dout;

reg [7:0] S;

reg data_ready, slow_follower;

//start bit is for syncing, wr_fifo..duh,

//zero_buf inserts 64 zeroes after good event

//synthesis attribute uselowskewlines of data_ready is yes

//synthesis attribute uselowskewlines of S is yes

//synthesis attribute uselowskewlines of timer is yes
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parameter [7:0]

init = 8’b0000_0001,

init1 = 8’b0000_0010,

sync = 8’b0000_0100,

grab0 = 8’b0000_1000,

grab1 = 8’b0001_0000,

grab2 = 8’b0010_0000,

grab3 = 8’b0100_0000,

buffer = 8’b1000_0000;

always@(posedge slow_clk) begin

if(res) slow_follower <= 0;

else slow_follower <= ~slow_follower;

end

always@(posedge clk) begin

if(res) begin

{SR, timer, dout, data_ready}<=0;

S<= init;

end

else

case (S)

init: begin

{SR, timer, dout, data_ready}<=0;

S<=(!slow_follower)?sync: init;

end

init1: S<= slow_follower ? sync: init1;

sync: begin

timer <= timer + 1;

S<=(|(frame^timer))?sync:grab0;

end
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grab0: begin

SR <= {SR[47:0], din};

S <= grab1;

end

grab1: begin

SR<= {SR[47:0], din};

S<= grab2;

end

grab2: begin

SR<= {SR[47:0], din};

S<=grab3;

end

grab3: begin

data_ready<=1’b1;

SR<= {SR[47:0], din};

S<=buffer;

end

buffer: begin

dout<=SR;

data_ready<=1’b0;

S<=grab0;

end

default: S<=init;

endcase

end//always

endmodule
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B.3 Pulse Handler

/*********************************************************************

*PULSE_HANDLER.V- This module establishes an asynchronous

* handshake between the readout software and the fpga. The

* readout software raises the "START" line, which causes the

* fpga to lower the reset on everything in data_handler.v. This

* makes it so that there are no noise hits or weird events left

* over in the fifos from the time before data taking

* started. After wakeup_timer has allowed enough time for these

* processes to be synced up, it sends a trigger pulse(trig) to

* the pulser. The pulser promptly returns a negative going

* pulse, which in turn triggers a ~230 us pulse made by a LM555

* timer. The state machine waits for the rising edge of this

* pulse, then waits for either the fall of the pulse or for all

* of the fifos to empty, whichever comes last. It then raises

* the DONE line, and waits for the START line to be lowered. It

* should be noted that there might be 1 event left in the output

* controller when the DONE line gets strobed, so the readout

* software should have at least 10 us of delay before issuing a

* dig_block_clear(not that this should be a a difficult goal to

* achieve... In fact, it’s not worth worrying about.) There are

* a couple of other functions that should also be noted. If the

* pulse jumper is shorted to ground, the SM will send a total of

* 100 pulses before raising the DONE line. This will be useful

* when the kinks get worked out of the readout software, because

* it will DRAMATICALLY raise the maximum acheivable event rate.

* If the cal jumper is shorted, the state machine will assume

* that source data is being taken, and not send any pulses.

* Instead, the fifos will be inhibited until start is raised.

* Done drops to low until the first event arrives. Once the

* fifos are empty and the controller is idle (i.e. the event is

* read out) done will go high. If start remains raised, done

* will go low again once the fifos are populated or the

* controller is busy. When start is forced low, done will

* remain low until the fifos are empty and the controller is

* idle, after which it will go high and inhibit the fifos.

*

*********************************************************************/
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/********************************************************************

* IN A NUTSHELL:

* pulse_ and cal_ jumpers are pulled up and can be forced to

* ground. pulse_jumper should be put in(grounded) when you want

* 100 pulses; trig is the trigger output to the pulser, trig_in

* goes low when the pulse is done. cal_jumper should be grounded

* when pulses are not wanted (i.e. when doing source

* measurements). with cal_jumper grounded: the start line

* becomes an inverted inhibit line (i.e. start

* high = inhibit low) the done line becomes an inverted busy

* line (i.e. done low = busy high)

*

*

**********************************************************************

* Brian Keeney, 6/9/04, bkeeney@scipp.ucsc.edu

* Jason Heimann, 6/15/04, jheimann@scipp.ucsc.edu

*

* Copyright 2004 University of California, Santa Cruz

* Santa Cruz Institute for Particle Physics

* Natural Sciences 2, 1156 High St. Santa Cruz, CA 95064

*********************************************************************/

module pulse_handler(done, trig, res_fifos, start, some_flag,

pulse_jumper, cal_jumper, ctrlr_idle,

fast_or, res, clk);

output done, trig, res_fifos;

input start, pulse_jumper, cal_jumper, fast_or,

some_flag, ctrlr_idle, res, clk;

reg done, res_fifos, trig;

reg [6:0] S;

reg [6:0] cnt;

reg [1:0] wakeup_timer;

reg [2:0] idle_settle;

reg [3:0] rad_settle;

reg [11:0] trig_delay;
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parameter [6:0] cnt_limit = 7’h63; //this is 99 decimal

parameter [6:0] init = 7’b 0000001,

send_pulse = 7’b 0000010,

wait_for_idle = 7’b 0000100,

inc_pulse_counter = 7’b 0001000,

pulse_finish = 7’b 0010000,

radiation_test = 7’b 0100000,

radiation_finish = 7’b 1000000;

always@(posedge clk) begin

if(res) begin

{cnt, wakeup_timer, done, trig,

trig_delay, idle_settle, rad_settle} <= 0;

res_fifos <= 1’b1;

S <= init;

end

else begin

case(S)

init: begin

//was done <= 1’b0;

//now only drop done if start is

//high or we are doing calib

if( start | cal_jumper ) done <= 1’b0;

if( start ) res_fifos <= 1’b0;

wakeup_timer <= start ?

{^wakeup_timer, ~wakeup_timer[0]} : 2’b0;

case (&wakeup_timer)

1’b1 : S<= cal_jumper ?

send_pulse : radiation_test;

1’b0 : S<= init;

endcase

end
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send_pulse: begin

trig_delay <= trig_delay + 1;

//this sends a trigger pulse

//that is one slow clock period wide

//the LeCroy can take pulses down to 1.5nS...

trig <= &(~trig_delay);

S <= (&trig_delay) ?

wait_for_idle : send_pulse;

end

wait_for_idle: begin

trig_delay <= 8’h00;

idle_settle <=

( ( !fast_or ) &&

( !some_flag ) && ctrlr_idle ) ?

{idle_settle[2] ^ (&idle_settle[1:0]),

^idle_settle[1:0], ~idle_settle[0]} : 0;

S <= ( &idle_settle ) ?

inc_pulse_counter : wait_for_idle;

end

inc_pulse_counter: begin

cnt <= pulse_jumper ? 0 :

{cnt[6] ^ (&cnt[5:0]),

cnt[5] ^ (&cnt[4:0]),

cnt[4] ^ (&cnt[3:0]),

cnt[3] ^ (&cnt[2:0]),

cnt[2] ^ (&cnt[1:0]),

^cnt[1:0], ~cnt[0]};

//not(or(xor)) below is equivalent

//to (cnt_limit == cnt)

S <= ( ~( |( cnt_limit ^ cnt ) ) |

pulse_jumper ) ?

pulse_finish : send_pulse;

end

pulse_finish: begin

cnt <= 0;

done <= 1’b1;

96



res_fifos <= 1’b1;

S <= ( !start ) ? init : pulse_finish;

end

radiation_test: begin

//drop done if data appears in

//fifos or controller

if( some_flag | (!ctrlr_idle) ) done <= 1’b0;

//after data disappears or start is dropped,

//wait for 1.6 uS

//before the next state

rad_settle <= ( (!start) | ( (!some_flag) &

ctrlr_idle ) ) ?

{rad_settle[3] ^ ( &rad_settle[2:0] ),

rad_settle[2] ^ ( &rad_settle[1:0] ),

^rad_settle[1:0],

~rad_settle[0]} : 0;

S <= ( &rad_settle ) ?

radiation_finish : radiation_test;

end

radiation_finish: begin

//ifno data in fifos or controller, raise done

if( (!some_flag) & ctrlr_idle ) done <= 1’b1;

//otherwise lower it

else done <= 1’b0;

//if we’re not done in this state

//go back to rad_test

S <= ( (!start) & done ) ?

init : radiation_test;

end
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default: S<= init;

endcase

end

end //always

endmodule
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B.4 Data Handler

/*********************************************************************

* DATA_HANDLER_V1.V

*

* Data Handler stitches together fifo_server and channel_server. The

* overall functionality of the set of modules is that of data

* compression. The module marks a start time when a channel goes

* high, and stores the start time and the transition in one of 16

* fifos. When the channel goes low, the stop time is marked and

* entered into the same fifo. The 16 fifos are then selectively

* read out based generally on need into one main fifo. At this

* point an additional tag is placed on the data to identify the

* non-mapped channel id. The main fifo is read out by the output

* controller.

*

* Brian Keeney, 6/1/04, bkeeney@scipp.ucsc.edu

*

* Copyright 2004 University of California, Santa Cruz

* Santa Cruz Institute for Particle Physics

* Natural Sciences 2, 1156 High St. Santa Cruz, CA 95064

*********************************************************************/

module data_handler(dout, bf_empty, fifo_flag, din, data_ready,

some_flag, many_flag, rd_fifo,

clk, res, little_wr, big_wr );

output [39:0] dout;

output bf_empty;

output fifo_flag;//this goes high if one or more fifos are full;

output many_flag, some_flag, little_wr, big_wr;

input [63:0] din;

input data_ready, rd_fifo, clk, res;

wire [39:0] C0, C1, C2, C3, C4, C5, C6, C7,

C8, C9, C10, C11, C12, C13, C14, C15;

wire [15:0] many, some, ch_rd, fifo_full, wr_little_bus;

wire [31:0] tyme;

wire many_flag, some_flag;

assign fifo_flag = |fifo_full;

assign some_flag = (| some)|!bf_empty;

assign many_flag = | many;

assign little_wr = |wr_little_bus;

99



fifo_server_v2 fifo_server(

.dout(dout),

.rd_ch_fifo(ch_rd),

.many(many),

.some(some),

.clk(clk),

.res(res),

.bf_rd(rd_fifo),

.big_wr(big_wr),

.bf_empty(bf_empty),

.d0(C0), .d1(C1), .d2(C2), .d3(C3), .d4(C4),

.d5(C5), .d6(C6), .d7(C7), .d8(C8), .d9(C9),

.d10(C10), .d11(C11), .d12(C12), .d13(C13),

.d14(C14), .d15(C15)

);

timer timer (

.Q(tyme),

.CE(data_ready),

.CLK(clk),

.SCLR(res)

);

defparam S0.group_id = 5’h10;

chan_server S0(

.dout(C0),

.some(some[0]),

.many(many[0]),

.fifo_full(fifo_full[0]),

.din(din[3:0]),

.data_ready(data_ready),

.rd_fifo(ch_rd[0]),

.tyme(tyme),

.wr_fifo(wr_little_bus[0]),

.clk(clk),

.res(res)

);

defparam S1.group_id = 5’h11;

chan_server S1(

.dout(C1),

.some(some[1]),

100



.many(many[1]),

.fifo_full(fifo_full[1]),

.din(din[7:4]),

.data_ready(data_ready),

.rd_fifo(ch_rd[1]),

.tyme(tyme),

.wr_fifo(wr_little_bus[1]),

.clk(clk),

.res(res)

);

defparam S2.group_id = 5’h12;

chan_server S2(

.dout(C2),

.some(some[2]),

.many(many[2]),

.fifo_full(fifo_full[2]),

.din(din[11:8]),

.data_ready(data_ready),

.rd_fifo(ch_rd[2]),

.wr_fifo(wr_little_bus[2]),

.tyme(tyme),

.clk(clk),

.res(res)

);

defparam S3.group_id = 5’h13;

chan_server S3(

.dout(C3),

.some(some[3]),

.many(many[3]),

.fifo_full(fifo_full[3]),

.din(din[15:12]),

.data_ready(data_ready),

.rd_fifo(ch_rd[3]),

.wr_fifo(wr_little_bus[3]),

.tyme(tyme),

.clk(clk),

.res(res)

);

defparam S4.group_id = 5’h14;

chan_server S4(

.dout(C4),

.some(some[4]),
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.many(many[4]),

.fifo_full(fifo_full[4]),

.din(din[19:16]),

.data_ready(data_ready),

.rd_fifo(ch_rd[4]),

.wr_fifo(wr_little_bus[4]),

.tyme(tyme),

.clk(clk),

.res(res)

);

defparam S5.group_id = 5’h15;

chan_server S5(

.dout(C5),

.some(some[5]),

.many(many[5]),

.fifo_full(fifo_full[5]),

.din(din[23:20]),

.data_ready(data_ready),

.rd_fifo(ch_rd[5]),

.wr_fifo(wr_little_bus[5]),

.tyme(tyme),

.clk(clk),

.res(res)

);

defparam S6.group_id = 5’h16;

chan_server S6(

.dout(C6),

.some(some[6]),

.many(many[6]),

.fifo_full(fifo_full[6]),

.din(din[27:24]),

.data_ready(data_ready),

.rd_fifo(ch_rd[6]),

.tyme(tyme),

.wr_fifo(wr_little_bus[6]),

.clk(clk),

.res(res)

);

defparam S7.group_id = 5’h17;

chan_server S7(

.dout(C7),

.some(some[7]),
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.many(many[7]),

.fifo_full(fifo_full[7]),

.din(din[31:28]),

.data_ready(data_ready),

.rd_fifo(ch_rd[7]),

.wr_fifo(wr_little_bus[7]),

.tyme(tyme),

.clk(clk),

.res(res)

);

defparam S8.group_id = 5’h18;

chan_server S8(

.dout(C8),

.some(some[8]),

.many(many[8]),

.fifo_full(fifo_full[8]),

.din(din[35:32]),

.data_ready(data_ready),

.rd_fifo(ch_rd[8]),

.wr_fifo(wr_little_bus[8]),

.tyme(tyme),

.clk(clk),

.res(res)

);

defparam S9.group_id = 5’h19;

chan_server S9(

.dout(C9),

.some(some[9]),

.many(many[9]),

.fifo_full(fifo_full[9]),

.din(din[39:36]),

.data_ready(data_ready),

.rd_fifo(ch_rd[9]),

.wr_fifo(wr_little_bus[9]),

.tyme(tyme),

.clk(clk),

.res(res)

);

defparam S10.group_id = 5’h1a;

chan_server S10(

.dout(C10),

.some(some[10]),
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.many(many[10]),

.fifo_full(fifo_full[10]),

.din(din[43:40]),

.data_ready(data_ready),

.wr_fifo(wr_little_bus[10]),

.rd_fifo(ch_rd[10]),

.tyme(tyme),

.clk(clk),

.res(res)

);

defparam S11.group_id = 5’h1b;

chan_server S11(

.dout(C11),

.some(some[11]),

.many(many[11]),

.fifo_full(fifo_full[11]),

.din(din[47:44]),

.data_ready(data_ready),

.rd_fifo(ch_rd[11]),

.wr_fifo(wr_little_bus[11]),

.tyme(tyme),

.clk(clk),

.res(res)

);

defparam S12.group_id = 5’h1c;

chan_server S12(

.dout(C12),

.some(some[12]),

.many(many[12]),

.fifo_full(fifo_full[12]),

.din(din[51:48]),

.data_ready(data_ready),

.wr_fifo(wr_little_bus[12]),

.rd_fifo(ch_rd[12]),

.tyme(tyme),

.clk(clk),

.res(res)

);

defparam S13.group_id = 5’h1d;

chan_server S13(

.dout(C13),

.some(some[13]),
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.many(many[13]),

.fifo_full(fifo_full[13]),

.din(din[55:52]),

.data_ready(data_ready),

.rd_fifo(ch_rd[13]),

.wr_fifo(wr_little_bus[13]),

.tyme(tyme),

.clk(clk),

.res(res)

);

defparam S14.group_id = 5’h1e;

chan_server S14(

.dout(C14),

.some(some[14]),

.many(many[14]),

.fifo_full(fifo_full[14]),

.din(din[59:56]),

.data_ready(data_ready),

.rd_fifo(ch_rd[14]),

.wr_fifo(wr_little_bus[14]),

.tyme(tyme),

.clk(clk),

.res(res)

);

defparam S15.group_id = 5’h1f;

chan_server S15(

.dout(C15),

.some(some[15]),

.many(many[15]),

.fifo_full(fifo_full[15]),

.din(din[63:60]),

.data_ready(data_ready),

.rd_fifo(ch_rd[15]),

.wr_fifo(wr_little_bus[15]),

.tyme(tyme),

.clk(clk),

.res(res)

);

endmodule
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B.5 Channel Server

/*********************************************************************

*CHAN_SERVER.V- this module monitors a group of four channels.

* chan_stat holds the previous status of the channel. If there

* is a difference between chan_stat and din for that chanel, a

* fifo write strobe will go high for that channel, and the

* timestamp will be written to the fifo along with the status

* bit(up or down) and the channel. It is critical that

* chan_server be started at the right time so that it has

* valid data for all four processing states. This is currently

* assured by data_ready from ser_2_par.

*

* Brian Keeney, 6/7/04

*

* Copyright 2004

* Santa Cruz Institute for Particle Physics

* Natural Sciences 2, 1156 High St. Santa Cruz, CA 95064

********************************************************************/

module chan_server(dout, some, many, fifo_full, din,

data_ready, rd_fifo,wr_fifo, tyme, clk, res);

output [39:0] dout;

output some, many, fifo_full, wr_fifo;

input [31:0] tyme; //"time" with an i is a token...

input [3:0] din;

input data_ready, clk, res, rd_fifo;

reg [3:0] chan_stat; //onehot channel encoding of status(up or down)

reg [5:0] S;

reg [1:0] chan; // this is the channel to write to the fifo

reg updown, wr_fifo, res_fifo;

parameter [4:0] group_id = 5’b11111;

parameter [5:0]

init = 6’b000001,

update0 = 6’b000010,

update1 = 6’b000100,

update2 = 6’b001000,

update3 = 6’b010000,

hold = 6’b100000;
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wire [34:0] fifo_out;

wire [1:0] data_count;

wire fifo_full, fifo_empty;

assign many = data_count[1];

assign some = !fifo_empty;

assign dout = {group_id, fifo_out};

//synthesis attribute uselowskewlines of S is yes

ch_fifo ch_fifo(

.clk(clk),

.sinit(res_fifo),

.din({chan, updown, tyme}),//The event data is

.wr_en(wr_fifo), //concatenated here

.rd_en(rd_fifo),

.dout(fifo_out),

.full(fifo_full),

.empty(fifo_empty),

.data_count(data_count));

always@(posedge clk) begin

if(res) begin

{chan_stat, chan, updown, wr_fifo}<=0;

res_fifo <= 1’b1;

S <= init;

end

else begin

case(S)

init: begin

{chan_stat, chan, updown, wr_fifo, res_fifo}<=0;

S<=data_ready?update0:init;

end

update0: begin

chan_stat[0] <=din[0];

wr_fifo <= chan_stat[0]^din[0];

chan <= 2’b00;

updown <= din[0];

S <= update1;

end
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update1: begin

chan_stat[1]<=din[1];

wr_fifo<=chan_stat[1]^din[1];

chan<=2’b01;

updown <= din[1];

S <= update2;

end

update2: begin

chan_stat[2]<=din[2];

wr_fifo<=chan_stat[2]^din[2];

chan<=2’b10;

updown <= din[2];

S <= update3;

end

update3: begin

chan_stat[3]<=din[3];

wr_fifo<=chan_stat[3]^din[3];

chan<=2’b11;

updown <= din[3];

S <= hold;

end

hold: begin

S <= update0;

wr_fifo <= 1’b0;

end

default: begin

S <= init;

res_fifo <= 1’b1;

end

endcase

end

end

endmodule
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B.6 FIFO Server

/*********************************************************************

*FIFO_SERVER_V2.V- This module monitors the channel server fifos.

* In normal operation, when none of the fifos are more than half

* full, the SM spins through each fifo, reading out one event

* before moving to the next server. When it reads an event, it

* writes it to the main fifo, which is in turn read out by the

* readout controller. The state machine only performs a read

* and write when the main fifo is not full. In emergency

* operation, when the "many" flag is high, the SM skips over

* fifos which have only "some" events, and reads out fifos with

* "many" events completely. This mode persists until the many

* flag goes down.

* Brian Keeney, 6/7/04

*

* Copyright 2004

* Santa Cruz Institute for Particle Physics, Santa Cruz, CA

********************************************************************/

module fifo_server_v2(dout, rd_ch_fifo, many, some, clk,

res,bf_rd,bf_empty, d0, d1, d2, d3, d4,

d5, d6, d7, d8, d9, d10, d11, d12, d13,

d14, d15, big_wr);

parameter num_fifo = 16;

parameter num_fifo_bits = 4;

output [39:0] dout;

output [num_fifo-1:0] rd_ch_fifo;

output bf_empty, big_wr;

input [39:0] d0, d1, d2, d3, d4, d5, d6, d7,

d8, d9, d10, d11, d12, d13, d14, d15;

input [num_fifo-1:0] many, some;

input clk, res, bf_rd;

wire many_flag = |many;

wire bf_rd, bf_full, bf_empty;//bf stands for big fifo

reg [39:0] mux_out;

reg empty_bit, wr_main_fifo;

reg [2:0] S;

reg[num_fifo_bits-1:0] ch_count;

reg [num_fifo-1:0] rd_ch_fifo;
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assign big_wr = wr_main_fifo;

parameter [2:0] home = 3’b001,

read = 3’b010,

write_fifo = 3’b100;

//synthesis attribute uselowskewlines of S is yes

big_fifo big_fifo(

.clk(clk),

.sinit(res),

.din(mux_out),

.wr_en(wr_main_fifo),

.rd_en(bf_rd),

.dout(dout),

.full(bf_full),

.empty(bf_empty)

);

//mux to switch between the little fifos and the main fifo

always@(d0 or d1 or d2 or d3 or d4

or d5 or d6 or d7 or d8 or d9 or d10 or

d11 or d12 or d13 or d14 or d15 or ch_count) begin

case(ch_count)

4’h0: mux_out = d0;

4’h1: mux_out = d1;

4’h2: mux_out = d2;

4’h3: mux_out = d3;

4’h4: mux_out = d4;

4’h5: mux_out = d5;

4’h6: mux_out = d6;

4’h7: mux_out = d7;

4’h8: mux_out = d8;

4’h9: mux_out = d9;

4’ha: mux_out = d10;

4’hb: mux_out = d11;

4’hc: mux_out = d12;

4’hd: mux_out = d13;

4’he: mux_out = d14;

4’hf: mux_out = d15;

endcase

end
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always@(posedge clk) begin

if(res) begin

{empty_bit, rd_ch_fifo, ch_count, wr_main_fifo}<= 0;

S <= home;

end

else begin

case(S)

home: begin

wr_main_fifo <= 1’b0;

empty_bit<=many[ch_count];

S<=((some[ch_count]&!many_flag)|many[ch_count])?read:home;

ch_count<=((some[ch_count]&!many_flag)|many[ch_count])?ch_count:

{(ch_count[3]^(&ch_count[2:0])), (ch_count[2]^(&ch_count[1:0])),

(ch_count[1]^ch_count[0]), ~ch_count[0]};

rd_ch_fifo[ch_count]<=((some[ch_count]&!many_flag)|many[ch_count]);

end

read: begin

rd_ch_fifo <= 1’b0;

wr_main_fifo <= bf_full ? 1’b0:1’b1;

S <= bf_full? read : write_fifo;

end

write_fifo: begin

wr_main_fifo<=1’b0;

empty_bit<=(empty_bit&some[ch_count])?1’b1:1’b0;

S<=(empty_bit&some[ch_count])?read:home;

rd_ch_fifo[ch_count] <= (empty_bit&some[ch_count])? 1’b1:1’b0;

ch_count<=(empty_bit&some[ch_count])?ch_count:

{(ch_count[3]^(&ch_count[2:0])), (ch_count[2]^(&ch_count[1:0])),

(ch_count[1]^ch_count[0]), ~ch_count[0]};

end

endcase

end

end

endmodule
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B.7 Output Controller

/*********************************************************************

* OUTPUT_CONTROLLER.V- The output controller reads out the main

* fifo(data_handler.v) and chops the data into 3 16 bit packets.

* The 16th bit is reserved for error codes, so a zero is inserted

* in the data such that the 16th bit is always empty.

* The error codes are important for maintaining synchronization

* in the data file.

*

* Brian Keeney, 6/1/04, bkeeney@scipp.ucsc.edu

*

* Copyright 2004 University of California, Santa Cruz

* Santa Cruz Institute for Particle Physics

* Natural Sciences 2, 1156 High St. Santa Cruz, CA 95064

**********************************************************************

**********************************************************************

The timing diagram for this protocol can be found in the

NI6534 manual at NI.com or scipp/~bkeeney. The page number is 67,

section 3-10.

*********************************************************************/

module output_ctrlr(dout, req, idle,rd_fifo,

din, ack, fifos_full, res,

clk, fifo_empty, daq_clk);

parameter n_chan = 40; //this is the width of the fifo coming in

parameter packet = 16; //this is the width of the output bus

parameter max_count = 2’b11;//this is the bcd of n_chan/packet

parameter count_bits = 2;//index for def of counter;

output [15:0] dout;

output rd_fifo, req, idle;

input [n_chan-1:0] din;

input res, clk, fifo_empty, daq_clk, ack, fifos_full;

reg rd_fifo, idle;

reg [n_chan-1+2:0] shift_reg; //extra 2 bits for the zeros

reg [count_bits-1:0] shift_count;

reg req, good_read, ack_err, start_bit, fifo_full_bit;

reg [2:0] S;
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assign dout = shift_reg[15:0];

parameter [15:0] start_code = 16’haaaa,

ack_word = 16’hbbbb,

fifo_err = 16’hcccc;

parameter [2:0] init = 3’b000,

home = 3’b001,

shift_data_out = 3’b01

shift_1 = 3’b011,

wait_4_latch = 3’b100,

hold_time = 3’b101;

always@(posedge clk) begin

if(res) begin

{S, req, good_read, rd_fifo,

start_bit, ack_err, fifo_full_bit, idle}<=0;

end

else

case(S)

init: begin

{shift_reg, shift_count, req, ack_err, idle}<=0;

{rd_fifo, good_read, fifo_full_bit}<=0;

start_bit <= 1’b1;

S<=home;

end

home: begin

req <= 1’b0;

if(rd_fifo) begin

idle<=0;

rd_fifo <= 0;

S <= home;

end

else if(start_bit & ack) begin
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idle <= 0;

shift_reg[15:0] <= start_code;

shift_count<=max_count;

start_bit <= 0;

S <=shift_data_out;

end

else if (fifos_full & ack & !fifo_full_bit) begin

idle <= 0;

shift_reg[15:0] <= fifo_err;

fifo_full_bit <= 1’b1;

shift_count <= max_count;

S <= shift_data_out;

end

else if(ack_err|!ack) begin

idle <= 0;

shift_reg[15:0] <=(shift_reg[15])?

shift_reg[15:0]:ack_word;

shift_count <= max_count;

ack_err <= ack ? 1’b0: 1’b1;

S <= ack ? shift_data_out : home;

end

else if(!fifo_empty & good_read) begin

idle <= 0;

rd_fifo <= 1’b1;

good_read <= 1’b0;

S <= home;

end

else if(!good_read) begin

idle <= 0;

rd_fifo <= 1’b0;

shift_reg <= {din[39:30],1’b0,din[29:15],1’b0,din[14:0]};

shift_count <= 0;

S <= shift_data_out;

end

else begin

S<= home;

idle <= 1’b1;

end

end
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shift_data_out: begin

if(!ack) begin

S<= home;

ack_err <= 1’b1;

end

else {S, req} <= daq_clk ? {shift_1, 1’b1} :

{shift_data_out, 1’b0};

end

shift_1: begin

if(!ack) begin

S<= home;

ack_err <= 1’b1;

end

else S <= daq_clk ? shift_1 : wait_4_latch;

end

wait_4_latch: begin

if(!ack) begin

S<= home;

ack_err <= 1’b1;

end

S <= daq_clk ? hold_time : wait_4_latch;

end

hold_time: begin

if(!ack) begin

S<= home;

ack_err <= 1’b1;

end

else begin
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shift_reg <= shift_reg >> packet;//shift the reg by packet bits

shift_count <= shift_count[1] ? 2’b00 :

{^shift_count, ~shift_count[0]};

req <= ~shift_count[1];

S <= shift_count[1] ? home : shift_1;

good_read <= shift_count[1];

end//else

end

default: S <= init;

endcase

end//always

endmodule
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C Gain v2 Source Code

/********************************************************************

*Gain_v2- Program to fit s-curves, make gain and resolution curves,

* and chip-wide maps of these parameters.

* Brian Keeney, 6/2004

*********************************************************************/

const int MAX_NUM_THRESH = 100;

const float Y_SCALE = 1. / 500.;//Scale by number of PULSES

const float NUM_PULSES = 500.;

//what does a 1 volt pulse correspond to in fC

const float V_2_FC = 50.*.01131148;

const float DELTA = 0.001; // fudge factor due to float imprecision

const int NUM_CHANNELS = 100;

const float GAIN_MAX = 120.;

//when a fit on charge or sig_charge is >, it

const float CHARGE_CUT = 20.;

#include "TFile.h"

#include "TROOT.h"

#include "TTree.h"

#include "TBranch.h"

#include "TH1.h"

#include "TProfile.h"

#include "TNtuple.h"

#include <stdio.h>

#include <stdlib.h>

#include "TMath.h"

#include "TF1.h"

#include "TCanvas.h"

#include "TGraph.h"

#include "TGraphErrors.h"

#include "TPostScript.h"

#include "gain_v2_include.cxx"

#include "math.h"

int main()

{

//Structures

thresh_bin fv_thresh[MAX_NUM_THRESH];

channel_stats chan_gain_noise;
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//Stuff

long nEvents;

int iv_thresh_count = 0;

int cal_bus, channels, iChannel;

char fname[128];

channel_fit fit_array[NUM_CHANNELS];

init_fit_array(fit_array, MAX_NUM_THRESH, NUM_CHANNELS);

init_chan_gain_noise(&chan_gain_noise);

for(cal_bus =0;cal_bus<4;cal_bus++){

//cal0 is 8-15, 40-47

//cal1 is 0-7, 32-39

//cal2 is 24-31, 56-63

//cal3 is 16-23, 48-55

sprintf(fname,

"./../ptsm_data_7_28/out_pulse_cal_%d_a.root", cal_bus);

TFile *f = new TFile(fname );

TNtuple *ptsmout = (TNtuple *) f->Get("ptsmout;1");

nEvents =(long) ptsmout->GetEntries();

printf("Analyzing Calibration Bus %d, which has %d events\n",

cal_bus, nEvents);

iv_thresh_count = set_bins(ptsmout,fv_thresh);

for(channels = 0;channels<16;channels++){

iChannel = cal_bus + channels*4;

fit_s_curves(ptsmout, fv_thresh, fit_array, nEvents,

iv_thresh_count, iChannel);

printf("Successfully fit S-Curves for Channel %d\n",

iChannel);

fit_gain_curves(fit_array,&chan_gain_noise, iChannel);

printf(

"Successfully fit Gain and Noise Curves for Channel %d\n",

iChannel);

}//for channels

f->Close();

}//for_cal_bus

make_chip_map(&chan_gain_noise, 64);

printf("\a");

}//end_main
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C.1 Gain v2 Include File

typedef struct thresh_bin

{

float v_thresh;

float q_start;

float q_stop;

float q_delta;

long n_bins;

}thresh_bin;

typedef struct channel_fit

{

int n_points;//this is the number of fits accomplished

float * thresh;//mV

float * mu;//fC

float * mu_err;//fC

float * sigma;//e-

float * sigma_err;//e-

}channel_fit;

typedef struct channel_stats

{

float *gain; //mv/fc

float *gain_err;

float *gain_offset; //mv

float *gain_offset_err;

float *noise; //e-

float *noise_err;

float *noise_slope; //e-/mv

float *noise_slope_err;

}channel_stats;

void set_delta( thresh_bin * bin)

{

float delta =(bin->q_stop - bin->q_start)/

(2. * (float)bin->n_bins);

bin->q_start = bin->q_start - delta;

bin->q_stop = bin->q_stop+ delta;
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}//set_delta

int set_bins(TNtuple * ptsmout, thresh_bin * fv_thresh){

float fold_v_pulse = -1.;

float fold_thresh = -1.;

int iv_thresh_count =0;

long iEvent = 0;

float event_id, channel, tot, v_pulse, v_thresh;

long nEvents =(long) ptsmout->GetEntries();

TBranch *br1 = ptsmout->GetBranch( "event_id" );

br1->SetAddress( &event_id );

TBranch *br2 = ptsmout->GetBranch( "channel" );

br2->SetAddress( &channel );

TBranch *br3 = ptsmout->GetBranch( "tot" );

br3->SetAddress( &tot );

TBranch *br4 = ptsmout->GetBranch( "v_pulse" );

br4->SetAddress( &v_pulse );

TBranch *br5 = ptsmout->GetBranch( "v_thresh" );

br5->SetAddress( &v_thresh );

for(iEvent = 0;iEvent<nEvents;iEvent++)

{

// if(v_thresh>.070)break;

ptsmout->GetEntry(iEvent);

if(v_thresh != fold_thresh)

{

//set up the new thresh

fold_thresh=v_thresh;

fv_thresh[iv_thresh_count].n_bins=1;

fv_thresh[iv_thresh_count].v_thresh=v_thresh;

fv_thresh[iv_thresh_count].q_start=v_pulse;

fold_v_pulse = v_pulse;

//take care of q_stop for the last bin

if(iv_thresh_count!=0)

{

ptsmout->GetEntry(iEvent-1);

fv_thresh[iv_thresh_count-1].q_stop = v_pulse;

set_delta(&fv_thresh[iv_thresh_count-1]);
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// print_struct(&fv_thresh[iv_thresh_count-1]);

}

iv_thresh_count++;

}

else if(v_pulse != fold_v_pulse)

{

fv_thresh[iv_thresh_count - 1].n_bins++;

fold_v_pulse = v_pulse;

}

}//for iEvents

ptsmout->GetEntry(iEvent-1);

fv_thresh[iv_thresh_count-1].q_stop = v_pulse;

set_delta(&fv_thresh[iv_thresh_count-1]);

return iv_thresh_count;

}

void print_struct( thresh_bin * bin)

{

float v_thresh = bin->v_thresh;

float q_start = bin->q_start;

float q_stop = bin->q_stop;

int n_bins = bin->n_bins;

printf("vthr: %4.3f qstrt %4.3f qstp %4.3f nbins %d\n",

v_thresh, q_start, q_stop, n_bins);

}//print_struct

//memory cleanup G__scratch_all().

void store_fit( channel_fit * fit_array, float mu, float mu_err,

float sigma, float sigma_err, float thresh)

{

fit_array->mu[fit_array->n_points] = mu;

fit_array->mu_err[fit_array->n_points] = mu_err;

fit_array->sigma[fit_array->n_points] = sigma;

fit_array->sigma_err[fit_array->n_points] = sigma_err;

fit_array->thresh[fit_array->n_points] = thresh;
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fit_array->n_points++;

}//store_fit

void init_fit_array( channel_fit * fit_array, int num_thresh,

int num_channels)

{

int i;

for(i=0;i<num_channels;i++)

{

fit_array[i].mu = (float *) calloc(num_thresh, sizeof(float));

fit_array[i].mu_err = (float *)

calloc(num_thresh, sizeof(float));

fit_array[i].sigma = (float *)

calloc(num_thresh, sizeof(float));

fit_array[i].sigma_err = (float *)

calloc(num_thresh, sizeof(float));

fit_array[i].thresh = (float *)

calloc(num_thresh, sizeof(float));

fit_array[i].n_points = 0;

}//for i

}//init_fit_array

void init_chan_gain_noise(channel_stats * stats){

stats->gain= (float *) calloc(NUM_CHANNELS, sizeof(float));

stats->gain_err = (float *) calloc(NUM_CHANNELS, sizeof(float));

stats->gain_offset = (float *) calloc(NUM_CHANNELS, sizeof(float));

stats->gain_offset_err = (float *)

calloc(NUM_CHANNELS, sizeof(float));

stats->noise = (float *) calloc(NUM_CHANNELS, sizeof(float));

stats->noise_err = (float *) calloc(NUM_CHANNELS, sizeof(float));

stats->noise_slope = (float *) calloc(NUM_CHANNELS, sizeof(float));

stats->noise_slope_err = (float *)

calloc(NUM_CHANNELS, sizeof(float));

}//init_chan_gain_noise

void print_fit_array( channel_fit * fit_array){

int i;

for(i=0;i<fit_array->n_points;i++){

printf("%f %f %f %f %f\n", fit_array->thresh[i],

fit_array->mu[i], fit_array->mu_err[i],

fit_array->sigma[i], fit_array->sigma_err[i]);
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}//fori

}//print_fit_array

void store_gain_noise(channel_stats * stats,int iChannel,

float gain, float gain_err,

float gain_offset, float gain_offset_err,

float noise, float noise_err,

float noise_slope, float noise_slope_err){

stats->gain[iChannel] = gain;

stats->gain_err[iChannel] = gain_err;

stats->gain_offset[iChannel] = gain_offset;

stats->gain_offset_err[iChannel] = gain_offset_err;

stats->noise[iChannel] = noise;

stats->noise_err[iChannel] = noise_err;

stats->noise_slope[iChannel] = noise_slope;

stats->noise_slope_err[iChannel] = noise_slope_err;

}//store_gain_noise

void set_title_array(char * label, TF1 * fit, int channel, int gain){

float par0, par0err, par1, par1err;

par0 = fit->GetParameter(0);

par0err = fit->GetParError(0);

par1 = fit->GetParameter(1);

par1err = fit->GetParError(1);

if(gain){

sprintf(label,

"Ch %d Gain = %2.1f+/-%2.1f mV/fC Offset = %2.1f+/-%2.1f mV",

channel, par1, par1err, par0, par0err);

}

else{

sprintf(label,

"Ch %d Noise = %2.1f+/-%2.1f e- Slope = %2.1f +/- %2.1f",

channel, par0, par0err, par1, par1err);

}
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}//set_title_array

/*

void print_gain_noise(channel_stats * stats, int iChannel){

printf(" %d %f %f %f %f %f %f %f %f\n",

iChannel, stats->gain, stats->gain_err, stats->gain_offset,

stats->gain_offset_err, stats->noise, stats->noise_err,

stats->noise_slope, stats->noise_slope_err);

}//print_gain_noise

*/

/*********************************************************************

*FIT_S_CURVES

* Takes the data, bins accordingly, and fits s curves to it. Then

* stores the data in fv_thresh as electrons, fC, and mV

********************************************************************/

void fit_s_curves(TNtuple * ptsmout, thresh_bin * fv_thresh,

channel_fit * fit_array,

long nEvents, int iv_thresh_count,

int iChannel){

float event_id, channel, tot, v_pulse, v_thresh;

float mu, mu_err, sigma, sigma_err, gain, gain_err,

noise, noise_err;

char hname[128];

char hcut[128];

char hlabel[128];

char pslabel[128], axlabel[128];

int current_thresh;

int index;

//TF1 * ferf = new TF1("ferf",

"[2]*(1/2+TMath::Erf((x-[0])/[1])/2)",0.01,9.99);

TF1 * ferf = new TF1("ferf",
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"(1/2 +1/2*TMath::Erf((x-[0])/[1]))*[2]",0.01,9.99);

//make a histogram and canvas for each s-curve

TH1F *h[NUM_CHANNELS * MAX_NUM_THRESH];

TCanvas *c[NUM_CHANNELS * MAX_NUM_THRESH];

//this array of structs holds the fitted parameters

//set up the pointers...

TBranch *br1 = ptsmout->GetBranch( "event_id" );

br1->SetAddress( &event_id );

TBranch *br2 = ptsmout->GetBranch( "channel" );

br2->SetAddress( &channel );

TBranch *br3 = ptsmout->GetBranch( "tot" );

br3->SetAddress( &tot );

TBranch *br4 = ptsmout->GetBranch( "v_pulse" );

br4->SetAddress( &v_pulse );

TBranch *br5 = ptsmout->GetBranch( "v_thresh" );

br5->SetAddress( &v_thresh );

printf("fitting s-curves to channel ");

ferf->SetParameters(1.0,0.1, 500.);

for( current_thresh = 0; current_thresh < iv_thresh_count;

current_thresh++ )

{

if(iChannel>9) printf("\b");

printf("\b%d", iChannel);

fflush(0);

index = (NUM_CHANNELS*current_thresh)+iChannel;

sprintf(hname, "h%d", index);

sprintf(hcut,"(v_thresh<%f)&&(v_thresh>%f)&&(channel==%d)",

fv_thresh[ current_thresh ].v_thresh + DELTA,

fv_thresh[ current_thresh ].v_thresh - DELTA,

iChannel);

sprintf(pslabel, "./s_curves/s_curve_c_%d_v_thr_%f.ps",

iChannel, fv_thresh[current_thresh].v_thresh);

if(fv_thresh[current_thresh].n_bins){

h[ index ] = new TH1F( hname, "histo",
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fv_thresh[ current_thresh ].n_bins,

fv_thresh[ current_thresh ].q_start,

fv_thresh[ current_thresh ].q_stop );

}

else h[ index ] = new TH1F( hname, "histo", 1,0,1);

h[index]->SetStats(kFALSE);

if(ptsmout->Project(hname, "v_pulse", hcut))

{

c[index] = new TCanvas();

// h[index]->Scale( Y_SCALE );

sprintf(axlabel, "Q(fC)/(%5.4f)", V_2_FC);

h[index]->GetXaxis()->SetTitle(axlabel);

h[index]->GetYaxis()->SetTitle("Occupancy");

h[index]->GetXaxis()->CenterTitle();

h[index]->GetYaxis()->CenterTitle();

h[index]->Fit("ferf", "Q");

noise = (float)V_2_FC*(ferf->GetParameter(1))*10000.

/1.602176 ;

noise_err =(float)V_2_FC*(ferf->GetParError(1))*10000.

/1.602176 ;

gain =(float) 1000./*V->mV*/

*fv_thresh[current_thresh].v_thresh/

( V_2_FC * ferf->GetParameter(0));

gain_err = (float)gain*ferf->GetParError(0)/

ferf->GetParameter(0);

mu = ferf->GetParameter(0)*V_2_FC;

mu_err = ferf->GetParError(0)*V_2_FC;

sigma = noise;

sigma_err = noise_err;

if((mu>CHARGE_CUT)|(mu_err>CHARGE_CUT)) {

mu = 0.;

mu_err = 0.;

sigma = 0.;
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sigma_err = 0.;

}

store_fit(&fit_array[iChannel],

mu, mu_err, sigma, sigma_err,

fv_thresh[current_thresh].v_thresh*1000.);

sprintf(hlabel,

"ch %d v_thresh = %1.0f mV Q_inj= %4.3f+/-%4.3f fC

noise = %1.0f+/-%1.0f e- gain = %3.2f+/-%3.2f mV/fC",

iChannel, fv_thresh[current_thresh].v_thresh*1000,

(float)ferf->GetParameter(0)*V_2_FC,

(float)ferf->GetParError(0)*V_2_FC,

noise, noise_err, gain, gain_err

);

h[index]->SetTitle(hlabel);

Int_t type = 112; //landscape

TPostScript ps(pslabel,type);

ps.Range(24,16); //set x,y of printed page

c[index]->Update();

ps.Close();

}

}//for current_thresh

printf("\n");

}

/*******************************************************************

* FIT_GAIN_CURVES-

* This function takes the fitted parameters of the s-curves

* makes a graph for the noise and a graph for the gain for

* each channel between and including channel start and channel_stop

********************************************************************/

void fit_gain_curves(channel_fit * fit_array, channel_stats *

chan_gain_noise, int iChannel){

Int_t type = 112;//this is the type of ps_file

TGraph * gain_graph[NUM_CHANNELS];

TGraph * noise_graph[NUM_CHANNELS];

TCanvas *gain_canvas[NUM_CHANNELS];

TCanvas *noise_canvas[NUM_CHANNELS];

char pslabel[128];

char gr_title[128];

printf("fitting gain and noise curves to ");

fflush(0);
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if(iChannel>9) printf("\b");

printf("\b%d", iChannel);

fflush(0);

TF1 *fgain = new TF1("fgain", "[0]+[1]*x", .001, 9.99);

TF1 *fnoise = new TF1("fnoise", "[0]+[1]*x", .001, 9.99);

//GAIN SECTION

gain_canvas[iChannel] = new TCanvas;

// print_fit_array(&fit_array[iChannel]);

if(fit_array[iChannel].n_points){

gain_graph[iChannel] = new TGraphErrors(

fit_array[iChannel].n_points,

fit_array[iChannel].mu,

fit_array[iChannel].thresh,

fit_array[iChannel].mu_err,

NULL);

//gain_graph[iChannel]->GetXaxis->SetTitle("Q_inj (fC)");

//gain_graph[iChannel]->GetYaxis->SetTitle("V_thresh (mV)");

//gain_graph[iChannel]->GetYaxis->CenterTitle();

//gain_graph[iChannel]->GetXaxis->CenterTitle();

gain_graph[iChannel]->GetXaxis()->SetTitle("50\% Point (fC)");

gain_graph[iChannel]->GetYaxis()->SetTitle("Threshold (mV)");

gain_graph[iChannel]->Draw("A*");

fgain->SetParameters(20., 100.);

gain_graph[iChannel]->Fit("fgain", "Q");

set_title_array(gr_title, fgain,iChannel, 1);

gain_graph[iChannel]->SetTitle(gr_title);

sprintf(pslabel,"./gain_curves/gain_ch_%d.ps", iChannel);

TPostScript gain_ps(pslabel,type);

gain_ps.Range(24,16); //set x,y of printed page

gain_canvas[iChannel]->Update();

gain_ps.Close();
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//NOISE SECTION

noise_graph[iChannel] = new TGraphErrors(

fit_array[iChannel].n_points,

fit_array[iChannel].mu,

fit_array[iChannel].sigma,

fit_array[iChannel].mu_err,

fit_array[iChannel].sigma_err);

noise_canvas[iChannel] = new TCanvas;

noise_graph[iChannel]->Draw("A*");

fnoise->SetParameters(1.0, 0.1);

noise_graph[iChannel]->Fit("fnoise", "Q");

set_title_array(gr_title, fnoise, iChannel, 0);

noise_graph[iChannel]->GetXaxis()->SetTitle("Charge Input (fC)");

noise_graph[iChannel]->GetYaxis()->SetTitle("Noise (e-)");

noise_graph[iChannel]->SetTitle(gr_title);

sprintf(pslabel,"./noise_curves/noise_ch_%d.ps", iChannel);

TPostScript ps2(pslabel,type);

ps2.Range(24,16); //set x,y of printed page

noise_canvas[iChannel]->Update();

ps2.Close();

store_gain_noise(chan_gain_noise,iChannel,

fgain->GetParameter(1),//gain

fgain->GetParError(1),

fgain->GetParameter(0),//offset

fgain->GetParError(0),

fnoise->GetParameter(0),//noise

fnoise->GetParError(0),

fnoise->GetParameter(1),//noise slope

fnoise->GetParError(1));

}//if there are points

else {//a dud channel

store_gain_noise(chan_gain_noise,iChannel,

0,//gain

0,

0,//offset

0,
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0,//noise

0,

0,//noise slope

0);

}

printf("\n");

}//fit_gain_curves

void make_chip_map(channel_stats * chan_gain_noise, int num_chan){

float chan_numbers[num_chan];

int i;

float chip_gain_f = 0.;

float chip_gain_err_f = 0.;

float chip_noise_f = 0.;

float chip_noise_err_f = 0.;

char label[128];

for(i=0;i<num_chan;i++) chan_numbers[i]=(float)i;

for(i=0;i<16;i++) {

// chan_gain_noise->gain[i*4]=0;

// chan_gain_noise->gain_err[i*4] = 0;

}

for(i=0;i<num_chan;i++){

chip_gain_f +=chan_gain_noise->gain[i];

chip_gain_err_f += chan_gain_noise->gain_err[i];

chip_noise_f +=chan_gain_noise->noise[i];

chip_noise_err_f += chan_gain_noise->noise_err[i];

}

chip_gain_f = chip_gain_f/((float)num_chan);

chip_gain_err_f = chip_gain_err_f/((float)num_chan);

chip_noise_f = chip_noise_f/((float)num_chan);

chip_noise_err_f = chip_noise_err_f/((float)num_chan);

TCanvas *c_gain = new TCanvas;

TGraph * chip_gain = new TGraphErrors(

num_chan,

chan_numbers,

chan_gain_noise->gain,

NULL,

chan_gain_noise->gain_err);
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chip_gain->SetMaximum(GAIN_MAX);

chip_gain->SetMinimum(0.);

sprintf(label,"PMFE Gain Map.

Gain = %f +/- %3.2f", chip_gain_f, chip_gain_err_f);

chip_gain->SetTitle(label);

chip_gain->GetXaxis()->SetTitle("Channel ID");

chip_gain->GetYaxis()->SetTitle("Gain (mV/fC)");

chip_gain->Draw("AB");

TPostScript chip_gain_ps("chip_gain.ps", 112);

chip_gain_ps.Range(24,16);

c_gain->Update();

chip_gain_ps.Close();

TCanvas* c_noise = new TCanvas;

TGraph * chip_noise = new TGraphErrors(

num_chan,

chan_numbers,

chan_gain_noise->noise,

NULL,

chan_gain_noise->noise_err);

chip_noise->SetMaximum(1500.);

chip_noise->SetMinimum(0.);

sprintf(label,"PMFE Gain Map.

Noise = %f +/- %3.2f", chip_noise_f, chip_noise_err_f);

chip_noise->SetTitle(label);

chip_noise->GetYaxis()->SetTitle("Noise (e-)");

chip_noise->GetXaxis()->SetTitle("Channel ID");

chip_noise->Draw("AB");

TPostScript chip_noise_ps("chip_noise.ps", 112);

chip_noise_ps.Range(24,16);

c_noise->Update();

chip_noise_ps.Close();

}
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D TOT Gain Source Code

/*********************************************************************

* TOT_GAIN_V1- Program to analyze TOT Gain of PMFE.

* Brian Keeney, 6/2004

*********************************************************************/

const int MAX_NUM_THRESH = 100;

const float Y_SCALE = 1. / 100.;

const float V_2_FC = (float)(3.237);

const float DELTA = 0.001; // fudge factor due to float imprecision

const int NUM_CHANNELS = 100;

const int REAL_NUM_CHANNELS = 64;

const int MAX_NUM_PULSE_BINS = 200;

//which threshold do you want to examine

const float V_THRESH_COMPARE = .10;

const float TOT_QUANTUM = .1;//TOT sampling period in microseconds

const int MAX_TOT = 200;

const float MIN_CHARGE = 1.;//fC

const float MAX_CHARGE = 20.;//fC

#include "TFile.h"

#include "TROOT.h"

#include "TTree.h"

#include "TBranch.h"

#include "TH1.h"

#include "TProfile.h"

#include "TNtuple.h"

#include <stdio.h>

#include <stdlib.h>

#include "TMath.h"

#include "TF1.h"

#include "TCanvas.h"

#include "TGraph.h"

#include "TGraphErrors.h"

#include "TPostScript.h"

#include "math.h"

#include "tot_gain_include.cxx"

int main()

{
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long nEvents;

int cal_bus, channels, iChannel;

char fname[128];

float chip_gain[64],chip_res[64];

s_fit_gauss s_gauss[REAL_NUM_CHANNELS];

s_pulse_index s_pulse;

init_s_fit_gauss(s_gauss, REAL_NUM_CHANNELS);

init_pulse_index(&s_pulse);

for(iChannel=0;iChannel<REAL_NUM_CHANNELS;iChannel++){

chip_gain[iChannel]=-1.;

chip_res[iChannel]=-1.;

}//for_ichannel

for(cal_bus =0;cal_bus<4;cal_bus++){

sprintf(fname, "./../ptsm_data_7_24/out_tot_bus_%d_no_grn.root",

cal_bus);

TFile *f = new TFile(fname );

TNtuple *ptsmout = (TNtuple *) f->Get("ptsmout;1");

nEvents =(long) ptsmout->GetEntries();

printf("Analyzing Calibration Bus %d, which has %d events\n",

cal_bus, nEvents);

set_bins(ptsmout, &s_pulse, V_THRESH_COMPARE);

for(channels = 0;channels<16;channels++){

iChannel = cal_bus + channels*4;

fit_gauss( ptsmout, &s_pulse, &s_gauss[iChannel],

V_THRESH_COMPARE);

fit_gain_res(&s_gauss[iChannel], &s_pulse, &chip_gain[iChannel],

&chip_res[iChannel]);

printf("\a Finished Analyzing Chip Channel %d\n", iChannel);
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}//for channels

f->Close();

}//for_cal_bus

plot_chip(chip_gain, chip_res);

printf("\a");

}//end_main
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D.1 TOT Gain Include File

typedef struct s_fit_gauss{

int channel;

float * gauss_mu, *gauss_mu_err;

float * gauss_sig, *gauss_sig_err;

TGraph * g_gain, *g_res;

TCanvas *c_gain, *c_res;

// TG1F * tot, res;

};

typedef struct s_pulse_index{

int num_pulses;

float * pulse_index;

float * q_inj;

};

void init_pulse_index(s_pulse_index * s_pulse){

s_pulse->num_pulses = 0;

s_pulse->pulse_index = (float *) calloc(MAX_NUM_PULSE_BINS,

sizeof(float));

s_pulse->q_inj = (float *) calloc(MAX_NUM_PULSE_BINS, sizeof(float));

}//init_pulse_index

void init_s_fit_gauss(s_fit_gauss * s_gauss, int channels){

int i;

for(i=0;i<channels;i++){

s_gauss[i].channel = i;

s_gauss[i].gauss_mu = (float *) calloc(MAX_NUM_PULSE_BINS,

sizeof(float));

s_gauss[i].gauss_mu_err = (float *)calloc(MAX_NUM_PULSE_BINS,

sizeof(float));

s_gauss[i].gauss_sig = (float *) calloc(MAX_NUM_PULSE_BINS,

sizeof(float));

s_gauss[i].gauss_sig_err = (float *)calloc(MAX_NUM_PULSE_BINS,

sizeof(float));

}

}//init_s_fit_gauss

int set_bins(TNtuple * ptsmout, s_pulse_index * s_pulse,
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float v_thresh_comp){

float fold_v_pulse = -1.;

long iEvent = 0;

float event_id, channel, tot, v_pulse, v_thresh;

long nEvents =(long) ptsmout->GetEntries();

TBranch *br1 = ptsmout->GetBranch( "event_id" );

br1->SetAddress( &event_id );

TBranch *br2 = ptsmout->GetBranch( "channel" );

br2->SetAddress( &channel );

TBranch *br3 = ptsmout->GetBranch( "tot" );

br3->SetAddress( &tot );

TBranch *br4 = ptsmout->GetBranch( "v_pulse" );

br4->SetAddress( &v_pulse );

TBranch *br5 = ptsmout->GetBranch( "v_thresh" );

br5->SetAddress( &v_thresh );

s_pulse->num_pulses=0;

for(iEvent = 0;iEvent<nEvents;iEvent++)

{

ptsmout->GetEntry(iEvent);

if((v_pulse != fold_v_pulse)&&(v_thresh==v_thresh_comp)){

s_pulse->pulse_index[s_pulse->num_pulses] = v_pulse;

s_pulse->q_inj[s_pulse->num_pulses] = V_2_FC*v_pulse;

s_pulse->num_pulses++;

fold_v_pulse = v_pulse;

}

}

return (s_pulse->num_pulses);

}//int set_bins;

void print_bins(s_pulse_index * s_pulse){

int i;

printf("%d is num_pulses\n", s_pulse->num_pulses);

for(i=0; i < s_pulse->num_pulses; i++){

printf("%d %f\n", i, s_pulse->pulse_index[i]);
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}

}//void print_bins

/*********************************************************************

* VOID SET_H_label

********************************************************************/

void set_h_label(TH1F *h, char *h_label, TF1 * g,

int channel,float v_pulse){

float mu, mu_err, sig, sig_err;

mu = g->GetParameter(1)*TOT_QUANTUM;

mu_err = g->GetParError(1)*TOT_QUANTUM;

sig = g->GetParameter(2)*TOT_QUANTUM;

sig_err = g->GetParError(2)*TOT_QUANTUM;

sprintf(h_label, "TOT Distribution for CH %d, Q %3.2f fC, MU

%%3.2f+/-%3.2f uS, STDEV %3.2f+/-%3.2f

%%uS", channel,

v_pulse*V_2_FC, mu, mu_err,

sig, sig_err);

h->GetXaxis()->SetTitle("TOT(.1 uS)");

h->GetYaxis()->SetTitle("Number of Events");

h->GetXaxis()->CenterTitle();

h->GetYaxis()->CenterTitle();

h->SetTitle(h_label);

}//set_h_label

/*********************************************************************

*VOID STORE_GAUSS_FIT

********************************************************************/

void store_gauss_fit(TF1 * g, s_fit_gauss * s_gauss, int index){

if(g->GetParameter(1)>0&&g->GetParameter(1)

<100&&g->GetParError(1)<20){

s_gauss->gauss_mu[index] = g->GetParameter(1)*TOT_QUANTUM;

s_gauss->gauss_mu_err[index] = g->GetParError(1)*TOT_QUANTUM;

s_gauss->gauss_sig[index] = g->GetParameter(2)*TOT_QUANTUM;

s_gauss->gauss_sig_err[index] = g->GetParError(2)*TOT_QUANTUM;

}

else{

s_gauss->gauss_mu[index]=0.;

s_gauss->gauss_mu_err[index]=0.;
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s_gauss->gauss_sig[index]=0.;

s_gauss->gauss_sig_err[index]=0.;

}

}//void store_gauss_fit

/*********************************************************************

*VOID FIT_GAUSS

********************************************************************/

void fit_gauss(TNtuple * ptsmout, s_pulse_index * s_pulse,

s_fit_gauss * s_gauss, float v_thresh_comp){

char ps_name[128];

char h_label[128];

char h_cut[128];

char h_name[128];

int i_pulse;

float event_id, channel, tot, v_pulse, v_thresh;

TH1F * h[MAX_NUM_PULSE_BINS];

TCanvas * c[MAX_NUM_PULSE_BINS];

TBranch *br1 = ptsmout->GetBranch( "event_id" );

br1->SetAddress( &event_id );

TBranch *br2 = ptsmout->GetBranch( "channel" );

br2->SetAddress( &channel );

TBranch *br3 = ptsmout->GetBranch( "tot" );

br3->SetAddress( &tot );

TBranch *br4 = ptsmout->GetBranch( "v_pulse" );

br4->SetAddress( &v_pulse );

TBranch *br5 = ptsmout->GetBranch( "v_thresh" );

br5->SetAddress( &v_thresh );

TF1 * g = new TF1("g", "gaus");

g->SetLineColor(2);

g->SetLineWidth(2);

for(i_pulse=0; i_pulse < s_pulse->num_pulses; i_pulse++){

sprintf(h_name, "h_%d_%d", s_gauss->channel, i_pulse);

sprintf(h_cut,

"v_pulse>%f-.001&&v_pulse<%f+.001&&(v_thresh>%f-.001)

&&(v_thresh<%f+.001)&&channel==%d",
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s_pulse->pulse_index[i_pulse],

s_pulse->pulse_index[i_pulse],

v_thresh_comp, v_thresh_comp, s_gauss->channel);

h[i_pulse] = new TH1F( h_name, h_name, MAX_TOT, 0, MAX_TOT-1);

h[i_pulse]->SetStats(kFALSE);

c[i_pulse] = new TCanvas();

if(ptsmout->Project(h_name, "tot", h_cut)){

h[i_pulse]->Draw();

h[i_pulse]->Fit("g", "Q");

set_h_label(h[i_pulse], h_label, g, s_gauss->channel,

s_pulse->pulse_index[i_pulse]);

store_gauss_fit(g, s_gauss, i_pulse);

Int_t type = 112; //landscape

sprintf(ps_name,

"./gauss_curves/ch_%d_q_%f.ps", s_gauss->channel,

s_pulse->pulse_index[i_pulse]);

TPostScript ps(ps_name,type);

ps.Range(24,16); //set x,y of printed page

c[i_pulse]->Update();

ps.Close();

}

}

}//void fit_gauss

/*********************************************************************

*VOID FIT_GAIN_RES--fit lines to the gain and resolution

********************************************************************/

void fit_gain_res(s_fit_gauss * s_gauss, s_pulse_index * s_pulse,

float * final_gain, float * final_res){
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char ps_label[128];

TF1 * pol = new TF1("pol", "pol1", 0.,MAX_CHARGE);

TF1 * polo = new TF1("polo", "pol0", 0.,MAX_CHARGE);

s_gauss->c_gain = new TCanvas();

s_gauss->g_gain = new TGraphErrors(s_pulse->num_pulses,

s_pulse->q_inj,

s_gauss->gauss_mu,

NULL,

s_gauss->gauss_mu_err);

s_gauss->g_gain->GetYaxis()->SetTitle("<TOT> (uS)");

s_gauss->g_gain->GetXaxis()->SetTitle("Q Injected (fC)");

s_gauss->g_gain->Draw("A*");

pol->SetLineColor(2);

pol->SetLineWidth(2);

polo->SetLineColor(2);

polo->SetLineWidth(2);

s_gauss->g_gain->Fit("pol", "RQ");

*final_gain = pol->GetParameter(1);

sprintf(ps_label,"./gain_curves/ch_%d_gain.ps", s_gauss->channel);

TPostScript gain_ps(ps_label,112);

sprintf(ps_label,"TOT Gain Curve for Channel %d. The average gain

is %3.2f +/- %3.2f", s_gauss->channel, pol->GetParameter(1),

pol->GetParError(1));

s_gauss->g_gain->SetTitle(ps_label);

gain_ps.Range(24,16); //set x,y of printed page

s_gauss->c_gain->Update();

gain_ps.Close();
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//Do the same for the resolution measurement

s_gauss->c_res = new TCanvas();

s_gauss->g_res = new TGraphErrors(s_pulse->num_pulses,

s_pulse->q_inj,

s_gauss->gauss_sig,

NULL,

s_gauss->gauss_sig_err);

s_gauss->g_res->GetYaxis()->SetTitle("TOT STD DEV (uS)");

s_gauss->g_res->GetXaxis()->SetTitle("Q Injected (fC)");

s_gauss->g_res->Draw("A*");

s_gauss->g_res->Fit("polo", "RQ","",MIN_CHARGE,MAX_CHARGE);

*final_res = polo->GetParameter(0);

sprintf(ps_label,"TOT Gain Resolution Curve for Channel %d.

The average resolution is %3.2f+/-%3.2f uS", s_gauss->channel,

polo->GetParameter(0),polo->GetParError(0));

s_gauss->g_res->SetTitle(ps_label);

sprintf(ps_label,"./res_curves/ch_%d_res.ps", s_gauss->channel);

TPostScript res_ps(ps_label,112);

res_ps.Range(24,16); //set x,y of printed page

s_gauss->c_res->Update();

res_ps.Close();

}//fit_gain_res

void print_s_gauss(s_fit_gauss * s_gauss, int num_points){

int i;

for(i=0;i<num_points;i++){

printf("%d %d %f %f %f %f\n",s_gauss->channel, i,

s_gauss->gauss_mu[i],

s_gauss->gauss_mu_err[i],
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s_gauss->gauss_sig[i],

s_gauss->gauss_sig_err[i]);

}

}

void plot_chip(float * chip_gain, float * chip_res){

int i;

float res_sum, res_sqd, g_sum, g_sqd;

float res_avg, res_dev, g_avg, g_dev;

float chan_num[REAL_NUM_CHANNELS];

char label[128];

for(i=0;i<REAL_NUM_CHANNELS;i++){

chan_num[i]= (float) i;

}//fori

for(i=0;i<REAL_NUM_CHANNELS;i++){

res_sum += chip_res[i];

res_sqd += chip_res[i]*chip_res[i];

g_sum += chip_gain[i];

g_sqd += chip_gain[i]*chip_gain[i];

}

g_avg = g_sum/(float)REAL_NUM_CHANNELS;

g_dev = sqrt(g_sqd-g_sum*g_sum)/(float)REAL_NUM_CHANNELS;

res_avg = res_sum/(float)REAL_NUM_CHANNELS;

res_dev = sqrt(res_sqd-res_sum*res_sum)/(float)REAL_NUM_CHANNELS;

sprintf(label, "Chip TOT Gain = %3.2f+/-%3.2f (uS/fC)", g_avg,

res_avg);

TCanvas * c_chip = new TCanvas();

TGraph * g_chip = new TGraphErrors(REAL_NUM_CHANNELS,

chan_num,

chip_gain,

NULL,

chip_res);
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g_chip->SetTitle(label);

g_chip->GetYaxis()->SetTitle("TOT gain (uS/fC)

Error Bars are Resolution");

g_chip->GetXaxis()->SetTitle("PMFE Channel Number");

g_chip->Draw("AB");

TPostScript gain_ps("chip_tot_gain.ps",112);

gain_ps.Range(24,16); //set x,y of printed page

c_chip->Update();

gain_ps.Close();

}//void plot_chip

143



E PTSM CALIB Source Code

/*

* Includes:

*/

#include "ptsm_constants.h"

#include "ptsm_include.h"

/*

* MAIN:

*/

int main(int argc, char* argv[])

{

//NI VARS

i16 iStatus = 0;

i16 iRetVal = 0;

u32 ulCount = NUM_WORDS;

u32 ulRemaining = NUM_WORDS;

int dev_pulser;

int dev_thresh;

int done_flag = 0;

FILE *f = NULL;

//ROOT VARS

float bin = 0.f;

int ibin = 0;

float ftot = 0.f;

int iEvent = 0;

float v_pulse = V_PULSE_START;

int pulse_step = 0;

float thresh_var = 0.f;

float v_thresh = V_THRESH_START;

int thresh_step = 0;

unsigned long i, j;

//ARRAYS

static i16 piBuffer[ NUM_WORDS ];

144



f = fopen("out.dat","w");

//this TTree call is, actually, required

//for the ROOT libraries to work

//the variable name and paramaters are not required;

//these are the programmer’s choice :)

TTree root_blows("ROOT","ROOT",9);

TFile *froot = new TFile("out.root","RECREATE");

TNtuple *ptsmout = new TNtuple("ptsmout",

"Here we are now... entertain us.",

"event_id:channel:tot:v_pulse:v_thresh");

printf("<*--------*>\n<-- PTSM -->\n<*--------*>\n");

printf("Now fortified with 12 vitamins and minerals!\n");

init_daq(v_pulse, v_thresh, &iRetVal, &iStatus, &dev_pulser,

&dev_thresh);

for( v_thresh = V_THRESH_START, thresh_step = 0;

( thresh_step < NUM_THRESH_STEPS ) && ( iStatus == 0 );

thresh_step++, v_thresh += V_THRESH_STEP )

{

set_thresh_ps(v_thresh, &dev_thresh);

printf("set_thresh_ps %.3f\n", v_thresh);

ProcessSystemEvents();

ProcessSystemEvents();

// thresh_var = -0.8f+17.8f*v_thresh;

for( v_pulse = V_PULSE_START, pulse_step = 0;

( pulse_step < NUM_PULSE_STEPS ) && ( iStatus == 0 );

pulse_step++, v_pulse += V_PULSE_STEP )

{

set_pulser_voltage(v_pulse, &dev_pulser);

printf(" set_pulser_voltage %.3f\n", v_pulse);

ProcessSystemEvents();

ProcessSystemEvents();

for( i = 0; i < NUM_PULSES; i++ )

{

//_getche();
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read_data(&iStatus, &iRetVal, piBuffer, &ulCount);

send_start(&iStatus, &iRetVal, 1);

done_flag = 0;

j = 0;

while( done_flag != 1 )

{

ProcessSystemEvents();

poll_done( &iStatus, &iRetVal, &done_flag );

++j;

//printf("poll_done returns %d\n", done_flag);

}

//printf("poll_done returns %d after %d polls\n", done_flag, j);

send_start(&iStatus, &iRetVal, 0);

halt_read(&iStatus, &iRetVal, &ulRemaining);

ProcessSystemEvents();

parse_data(piBuffer, &ulRemaining, &ulCount,

iEvent, v_thresh, v_pulse, ptsmout, f);

++iEvent;

}

}

}

cleanup();

// The device(s) is(are) taken offline.

ibonl(dev_pulser, 0);

ibonl(dev_thresh, 0);

froot->Write();

if( f != NULL )

fclose( f );

//printf("Press any key to continue.\n");

//getchar();

return(0);

}//int main
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E.1 PTSM CALIB Include File

#include "ptsm_constants.h"

/*********************************************************************

*GPIB Pulser Functions

********************************************************************/

//config_pulser sets up the pulser with the correct

//pulse height and period.

void config_pulser(float v_hi, int* dev_pulser)

{

char ConfigStr[1024];

int done=0;

// sprintf( ConfigStr,

"A:WID 40U;DEL 0 U;PER 100U;TRMD BURST;BC %d;VHI %f;VLO 0;LEAD

1E-9;TRAIL 1E-9;", num_pulses, v_hi );

sprintf( ConfigStr, "A:WID 400U;DEL 0 U;PER 402U;

TRMD SINGLE;VHI %f;VLO 0;LEAD 1n;TRAIL 1n;DEL 80n", v_hi );

// sprintf( ConfigStr, "%s A:TRLV 1.20;TRSL POS;TRIM HIGHZ;

TROV_SET TTL;DISA OFF;INVERT OFF;", ConfigStr );

sprintf( ConfigStr, "%s A:TRLV 1.20;TRSL POS;TRIM HIGHZ;

TROV 1.40;DISA OFF;INVERT OFF;", ConfigStr );

ibwrt (*dev_pulser, ConfigStr, strlen(ConfigStr));

}//config_pulser

//set_voltage sets only the high-side voltage of the pulser

void set_pulser_voltage(float V, int* dev_pulser)

{

char V_word[16];

sprintf(V_word, "A:VHI %.3f;", V);

ibwrt (*dev_pulser, V_word, strlen(V_word));

}//set_pulser_voltage

void config_thresh_ps(float v_thresh, int* dev_thresh)

{

// set over voltage protection

// and other shit as it becomes necessary/obvious

char V_word[1024];
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if( v_thresh > THRESH_OV_SET ) v_thresh = THRESH_OV_SET;

sprintf(V_word,

"vset %.3f;iset .01;ovset %.3f;ocp on;ovp on;",

v_thresh, THRESH_OV_SET);

ibwrt ( *dev_thresh, V_word, strlen(V_word));

/*

Fun Strings :

OCP ON turns overcurrent protection on

OVP ON

ISET 1.0 sets current to 1 amp

VSET 1.0 sets voltage to 1 amp

OVSET 1.0 sets overvoltage protection at 1 volt

*/

}// void config_thresh_ps

/*************************************************************

*set_thresh_ps sets V_THRESH using power supply NOT DAQ card *

*************************************************************/

void set_thresh_ps(float v_thresh, int* dev_thresh)

{

char command[1024];

if( v_thresh > THRESH_OV_SET ) v_thresh = THRESH_OV_SET;

sprintf(command, "vset %.3f;", v_thresh);

ibwrt ( *dev_thresh, command, strlen(command));

}//void set_thresh_ps

/*************************************************

* send_start sets the line corresponding to the

* calibration start pin of the FPGA. start_state

* specifies if the line is low (==0) or high (==1)

*************************************************/

void send_start(i16* iStatus, i16* iRetVal, int start_state)

{

if( start_state != 0 ) start_state = 1;

*iStatus = DIG_Out_Line(iDACDevice,

iDACPort, iLineStart, start_state);

*iRetVal = NIDAQErrorHandler(

*iStatus, "DIG_Out_Line", iIgnoreWarning);

}
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void send_reset(i16* iStatus, i16* iRetVal)

{

*iStatus = DIG_Out_Line(iDACDevice, iDACPort, iLineReset, 1);

*iRetVal = NIDAQErrorHandler(*iStatus, "DIG_Out_Line",

iIgnoreWarning);

printf("resetting FPGA\n");

ProcessSystemEvents();

*iStatus = DIG_Out_Line(iDACDevice, iDACPort, iLineReset, 0);

*iRetVal = NIDAQErrorHandler(*iStatus, "DIG_Out_Line",

iIgnoreWarning);

ProcessSystemEvents();

ProcessSystemEvents();

ProcessSystemEvents();

ProcessSystemEvents();

ProcessSystemEvents();

}

/*************************************************

* poll_done polls the line corresponding to the

* calibration done pin of the FPGA. done_state

* specifies if the line is low (==0) or high (==1)

*************************************************/

void poll_done(i16* iStatus, i16* iRetVal, int* done_state)

{

short s = 0;

*iStatus = DIG_In_Line(iDACDevice, iDACPort, iLineDone, &s);

*iRetVal = NIDAQErrorHandler(*iStatus, "DIG_In_Line",

iIgnoreWarning);

*done_state = s;

}

/*void set_cal_bus(i16 6703_dev_num, i16 bus_num, i16* iRetVal,

i16 iStatus)

{

WriteToDigitalLine (6703_dev_num, "0", 0, 8, 0, 0==bus_num);

WriteToDigitalLine (6703_dev_num, "0", 1, 8, 0, 1==bus_num);

WriteToDigitalLine (6703_dev_num, "0", 2, 8, 0, 2==bus_num);
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WriteToDigitalLine (6703_dev_num, "0", 3, 8, 0, 3==bus_num);

}//void set_cal_bus

*/

/********************************************************************

* Main Functions

********************************************************************/

/************************************************

*init_daq sets up the DAC, DIO card, and Pulser*

************************************************/

void init_daq(float v_pulse, float v_thresh, i16* iRetVal, i16*

iStatus,int* dev_pulser, int* dev_thresh)

{

//Configure the Pulser(timeout is 3 seconds)

*dev_pulser = ibdev(iPulserBrdIndex, iPulserPrimAdd,

iPulserSecAdd, T3s, 1, 0);

config_pulser(v_pulse, dev_pulser);

// config threshold power supply

*dev_thresh = ibdev(iPulserBrdIndex,

iThreshPrimAdd, 0, T3s, 1, 0);

config_thresh_ps(v_thresh, dev_thresh);

//configure "Done" line

*iStatus = DIG_Line_Config(iDACDevice,

iDACPort, iLineDone, iDirIn);

*iRetVal = NIDAQErrorHandler(*iStatus,

"DACDIG_LineDone_Config", iIgnoreWarning);

//configure "Start" line

*iStatus = DIG_Line_Config(iDACDevice, iDACPort,

iLineStart, iDirOut);

*iRetVal = NIDAQErrorHandler(*iStatus, "DACDIG_LineStart_Config",

iIgnoreWarning);

//configure "Reset" line

// *iStatus = DIG_Line_Config(iDACDevice, iDACPort, iLineReset,

iDirOut);

// *iRetVal = NIDAQErrorHandler(*iStatus,
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"DACDIG_LineReset_Config", iIgnoreWarning);

/* Configure group of ports as input, with handshaking. */

*iStatus = DIG_Grp_Config(iHSDevice, iHSGroup, iHSGroupSize,

iHSPort, iDirIn);

*iRetVal = NIDAQErrorHandler(*iStatus, "HSDIG_Grp_Config",

iIgnoreWarning);

/* Configure handshaking parameters for burst mode handshaking */

*iStatus = DIG_Grp_Mode(iHSDevice, iHSGroup, iSignal, iEdge,

iReqPol, iAckPol, iAckDelayTime);

*iRetVal = NIDAQErrorHandler(*iStatus, "HSDIG_Grp_Mode",

iIgnoreWarning);

/* Setup the device for External PClock */

*iStatus = Set_DAQ_Device_Info(iHSDevice,

ND_CLOCK_REVERSE_MODE_GR1, ND_ON);

*iRetVal = NIDAQErrorHandler(*iStatus,

"Set_HSDAQ_Device_Info", iIgnoreWarning);

}//void init_daq

/*****************************************************

* read_data initiates an asynchronous read operation*

*****************************************************/

void read_data(i16* iStatus, i16* iRetVal, i16 piBuffer [],

u32* ulCount)

{

*iStatus = DIG_Block_In(iHSDevice, iHSGroup, piBuffer,

*ulCount);

*iRetVal = NIDAQErrorHandler(*iStatus, "HSDIG_Block_In",

iIgnoreWarning);

}//void read_data

void halt_read(i16*iStatus, i16* iRetVal, u32* ulRemaining)

{

//find out how many words were read during the block read

*iStatus = DIG_Block_Check(iHSDevice, iHSGroup, ulRemaining);

*iRetVal = NIDAQErrorHandler(*iStatus, "HSDIG_Block_Check",

iIgnoreWarning);
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//if we haven’t read out a full block, terminate the read

operation

if( *ulRemaining != 0 )

{

*iStatus = DIG_Block_Clear(iHSDevice,

iHSGroup);

*iRetVal = NIDAQErrorHandler(*iStatus,

"HSDIG_Block_Clear", iIgnoreWarning);

}

}//void cleanup_read

/*********************************************************************

* int Parse_data takes a filled data buffer and parses it into events

********************************************************************/

int parse_data(i16 piBuffer [], u32* ulRemaining, u32* ulCount,

int iEvent, float v_thresh, float v_pulse,

TNtuple* ptsmout, FILE* f)

{

float ftot = 0.f;

float event_id = iEvent;

float bin = 0.f;

int ibin = 0;

int iWords;

int i, j;

int b;

unsigned long tempstamp = 0;

short tempstate;

//timestamp[] holds the last timestamp read in from a channel

//event.

//each element in the timestamp[] array corresponds to one

//channel.

unsigned long timestamp[ NUM_CHANNELS ];

//state[] == -1 if no state information is available

// == 0 if the channel is known low

// == +1 if the channel is known high

short state[ NUM_CHANNELS ];

for( i = 0; i < NUM_CHANNELS; state[i] = -1, timestamp[i] = 0,

i++ );

//iWords is set at -1 to prevent the analysis of any
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//events without

//first reading in a start or error code

iWords = -1;

//bin 200 is filled if no words were read at all

printf( "%ul words read\n", (*ulCount - *ulRemaining) );

if( *ulRemaining == *ulCount )

{

bin = 200;

ptsmout->Fill( event_id, bin, ftot, v_pulse, v_thresh );

}

else for( i = 0; i < (*ulCount - *ulRemaining); i++ )

{

if( f != NULL ) {

/*

fprintf( f, "%X: \t", piBuffer[ i ] & 0xffff );

if( ! (piBuffer[ i ] | 0xfff0) ) fprintf( f, "\t" );

for( b = 15; b >= 0; b-- )

{

fprintf( f,

"%c", ( ( piBuffer[ i ] & (long) pow( 2, b ) ) > 0 ? ’1’ : ’0’ ) );

}

fprintf( f, "\n" );

*/

fprintf( f, "%X\n", piBuffer[ i ] & 0xffff );

}

//look for start or error codes... fill bins 201, 202, 203

//and set iWords to 0. event analysis will begin with

//the next word read in

//HEY DORK! Remember this if..else if..else if chain prioritizes

//actions from the first case on down. Break the else if chain when

//you need two things to happen at once

if( (piBuffer[ i ] & 0xffbf) == 0xaaaa ) //no more stuck bits, right?

{

bin = 201;

ftot = 0.;

ptsmout->Fill( event_id, bin, ftot, v_pulse, v_thresh );

iWords = 0;

}

else if( (piBuffer[ i ] & 0xffbf) == 0xbbbb )

{

bin = 202;

ftot = 0.;
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ptsmout->Fill( event_id, bin, ftot, v_pulse, v_thresh );

iWords = 0;

}

else if( (piBuffer[ i ] & 0xffbf) == 0xcc8c )

{

bin = 203;

ftot = 0.;

ptsmout->Fill( event_id, bin, ftot, v_pulse, v_thresh );

iWords = 0;

}

else if( i == 0 )

{//there’s no error code to sync off of...

printf("No error code was found at the start of data.\n");

//return (0);

}

else if( iWords == 0 )

{

tempstamp = piBuffer[ i ] & 0x7fff; //grab the first 15 bits

++iWords;

}

else if( iWords == 1 )

{

tempstamp = tempstamp |

((piBuffer[ i ] & 0x7fff) << 15); //grab the next 15 bits

++iWords;

}

else if( iWords == 2 )

{

tempstamp = tempstamp

| ((piBuffer[ i ] & 0x3) << 30); //grab the last two bits

tempstate = ((piBuffer[ i ] & 0x4) >> 2) & 0x1; //grab the updown bit

ibin = ((piBuffer[ i ] & 0x3f8) >> 3) & 0x7f;

//grab the (7-bit) channel

/*if( f != NULL )

{

fprintf(f,

"event at %X, channel %d goes to %d\n",

tempstamp, ibin-64, tempstate);

fflush(f);

}*/
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ibin = ibin - 64;

//if we’ve got a falling edge, we’ve got an event!

if( ( tempstate == 0 ) && ( state[ ibin ] == 1 ) )

{

if( tempstamp > timestamp[ ibin ] )

j = tempstamp - timestamp[ ibin ];

else

j = tempstamp + (~timestamp[ ibin ]); //do we add a +1 to this?

ftot = j;

bin = ibin;

if( ibin < NUM_CHANNELS )

bin = MAP[ ibin ];

ptsmout->Fill( event_id, bin, ftot, v_pulse, v_thresh );

}

timestamp[ ibin ] = tempstamp;

state[ ibin ] = tempstate;

++iWords;

}

if( iWords >= WORDS_PER_FRAME )

iWords = 0;

}//for i = 0 to num words read

// find channels that were left high

for( ibin = 0; ibin < NUM_CHANNELS; ibin++ )

{

if( state[ ibin ] == 1 )

{

ftot = 0;

bin = ibin;

if( ibin < NUM_CHANNELS )

bin = MAP[ ibin ];

printf("channel %i left high\n", MAP[ ibin ]);

ptsmout->Fill( event_id, bin, ftot, v_pulse, v_thresh );

}

}
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return(0);

}//int parse_data

void cleanup()

{

//don’t check for errors - we don’t care!

/* Clear the block operation. */

DIG_Block_Clear(iHSDevice, iHSGroup);

/* Unconfigure group. */

DIG_Grp_Config(iHSDevice, iHSGroup, 0, 0, 0);

//not necessary to clear 6703

}
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E.2 PTSM CALIB Constants

/*

* Defines:

*/

#define _NI_mswin32_

#include "StdAfx.h"

/*********************************************************************

* Constants

********************************************************************/

const int WORDS_PER_FRAME = 3;

const int NUM_WORDS = 65536;

const int NUM_CHANNELS = 64;

const unsigned long NUM_PULSES = 100;//2500;

const float THRESH_OV_SET = 1.1f;

const float V_THRESH_START = .100f;

const float V_THRESH_STEP = .020f;

const int NUM_THRESH_STEPS = 2;

const float V_PULSE_START = 0.50f;

const float V_PULSE_STEP = 0.10f;

const int NUM_PULSE_STEPS = 21;

/*

const float V_THRESH_START = .060f;

const float V_THRESH_STEP = .010f;

const int NUM_THRESH_STEPS = 15;

const float V_PULSE_START = 3.200f;

const float V_PULSE_STEP = 0.080f;

const int NUM_PULSE_STEPS = 20;

*/

const int MAP[64] = {

1, 9, 17, 25, 33, 41, 49, 57,

0, 8, 16, 24, 32, 40, 48, 56,

3, 11, 19, 27, 35, 43, 51, 59,

2, 10, 18, 26, 34, 42, 50, 58,

5, 13, 21, 29, 37, 45, 53, 61,

4, 12, 20, 28, 36, 44, 52, 60,

7, 15, 23, 31, 39, 47, 55, 63,

6, 14, 22, 30, 38, 46, 54, 62 };
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/*********************************************************************

* Constants for NI hardware

********************************************************************/

//These are used for the NI cards

//iHS... correspond to the NI 6534 High Speed Digital IO card

//iDAC.. correspond to the NI 6703 Analog / Digial IO card

const i16 iHSDevice = 1;

const i16 iDACDevice = 2;

const i16 iHSGroup = 1;

const i16 iHSGroupSize = 2;

const i16 iDACGroup = 1;

const i16 iDACGroupSize = 2;

const i16 iHSPort = 0;

const i16 iDACPort = 0;

const i16 iDirIn = 0;

const i16 iDirOut = 1;

const i16 iLineStart = 7;

const i16 iLineDone = 6;

const i16 iLineReset = 4;

const i16 iSignal = 3;

const i16 iEdge = 0;

const i16 iReqPol = 0;

const i16 iAckPol = 0;

const i16 iAckDelayTime = 0;

const i16 iIgnoreWarning = 0;

const i16 iDacDevNum = 2;

const i16 iDacThreshChan = 1;

const i16 iPulserBrdIndex = 0;

const i16 iPulserPrimAdd = 1;

const i16 iPulserSecAdd = 0;

const i16 iThreshPrimAdd = 2;

const i16 iThreshSecAdd = 0;
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F COMP GAIN Source Code

/*********************************************************

COMP_GAIN.CXX

Program to fit and analyze gain curves obtained from a scope output

*********************************************************/

const int NUM_DATA_SETS = 16;

const int NUM_DATA_POINTS = 10;

const float MAX_CHARGE = 70.;

#include "TFile.h"

#include "TROOT.h"

#include "TTree.h"

#include "TBranch.h"

#include "TH1.h"

#include "TProfile.h"

#include "TNtuple.h"

#include <stdio.h>

#include <stdlib.h>

#include "TMath.h"

#include "TF1.h"

#include "TCanvas.h"

#include "TGraph.h"

#include "TGraphErrors.h"

#include "TPostScript.h"

#include "math.h"

int main()

//int comp_gain()

{

///////////////////////////////paper_set////////////////////////

float paper_data[26] =

{.34, .55, .76, .9, 1.1, 1.26, 1.46, 1.6, 1.74,

1.88, 2.07, 2.39, 2.66, 2.93, 3.25, 3.49, 3.79, 4.12, 4.28,

4.56, 5.88, 7.09, 8.18, 9.3, 10.45, 12.85};

float paper_charge[26] =

159



{1.25, 1.875, 2.5, 3.125, 3.75, 4.375, 5., 5.625, 6.25,

6.875, 7.5, 8.75, 10., 11.25, 12.5, 13.75, 15., 16.25,

17.5, 18.75, 25., 31.25, 37.5, 43.75, 50, 62.5};

/////////////////100mvset/////////////////////////

float ch_4_pulse_100mv_low[10] =

{.45, 1.20, 1.89, 2.6, 3.2, 3.8, 4.3, 4.8, 5.26, 5.64};

float ch_4_pulse_100mv_high[10] =

{2.47, 4.68, 6.26, 7.7, 9.0, 10.3, 11.8, 13.45, 14.9, 16.5};

float ch_15_pulse_100mv_low[10] =

{1.96, 2.58, 3.12, 3.62, 4.06, 4.5, 4.84, 5.28, 5.58, 5.92};

float ch_15_pulse_100mv_high[10] =

{3.52, 5.18, 6.5, 7.65, 8.75, 9.85, 11.2, 12.5, 13.85, 15.2};

float ch_10_pulse_100mv_low[10] =

{2.62, 3.22, 3.7, 4.22, 4.74, 5.2, 5.52, 5.94, 6.34, 6.64};

float ch_10_pulse_100mv_high[10] =

{4.35, 5.95, 7.35, 8.55, 9.80, 11.15, 12.65, 14.1, 15.6, 17.05};

float ch_1_pulse_100mv_low[10] =

{.26, .855, 1.47, 2., 2.52, 3.08, 3.54, 3.94, 4.34, 4.78};

float ch_1_pulse_100mv_high[10] =

{2.04, 3.96, 5.25, 6.55, 7.65, 8.8, 10., 11.2, 12.5, 13.9};

///////////////////125mvset////////////////////////////

float ch_1_pulse_125mv_low[10] =

{.115, .77, 1.47, 1.92, 2.44, 2.96, 3.43, 3.88, 4.32,4.68};

float ch_1_pulse_125mv_high[10] =

{1.82, 3.76, 5.3, 6.5, 7.15, 8.8, 9.95, 11.15, 12.45, 13.85};

float ch_15_pulse_125mv_low[10] =

{2.04,2.64, 3.2, 3.66, 4.12, 4.56, 4.88, 5.38, 5.58, 5.96};

float ch_15_pulse_125mv_high[10] =

{3.54, 5.14, 6.4, 7.58, 8.7, 9.8, 10.95, 12.25, 13.55, 14.96};

/////////////////////////////det_set///////////////////////////

float ch_4_det_125mv_low[10] =

{1.46, 2.08, 2.74, 3.36, 4.02, 4.64, 5.16, 5.64, 6.02, 6.5};
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float ch_4_det_125mv_high[10] =

{3.3, 5.66, 7.05, 8.4,9.45, 10.4, 11.45, 12.45, 13.55, 14.7};

float ch_1_det_125mv_low[10] =

{1.32, 2.5, 3.6, 4.38, 5.2, 5.84, 6.42, 6.8, 7.3, 7.65};

float ch_1_det_125mv_high[10] =

{4.16, 6.66, 8.3, 9.65, 10.75, 12.05, 13.2, 14.65, 16.15, 18.};

float

charge_high[NUM_DATA_POINTS],

charge_low[NUM_DATA_POINTS],

error_bars[NUM_DATA_POINTS],

g_o[NUM_DATA_POINTS],

g_o_err[NUM_DATA_POINTS],

g[NUM_DATA_POINTS],

g_err[NUM_DATA_POINTS];

char fit_results[128], file_name[128];

int i, j;

for(i=0;i<NUM_DATA_POINTS;i++){

charge_high[i] = /*((1.22.f)/5.*50.*.5)*/6.25*(float)(i+1);

//vout/vin*ccap*.5volt inc

charge_low[i] = /*((.316f.f)/5.*50.*.5)*/1.56f*(float)(i+1);

//vout/vin*ccap*.5volt inc

error_bars[i] = .01;

}

float * charge_picker[NUM_DATA_SETS] = {

charge_low, charge_low, charge_low, charge_low,

charge_high, charge_high, charge_high, charge_high,

charge_low, charge_low, charge_high, charge_high,

charge_low, charge_low, charge_high, charge_high

};
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float * data_set[NUM_DATA_SETS+3] = {

ch_1_pulse_100mv_low,

ch_4_pulse_100mv_low,

ch_10_pulse_100mv_low,

ch_15_pulse_100mv_low,

ch_1_pulse_100mv_high,

ch_4_pulse_100mv_high,

ch_10_pulse_100mv_high,

ch_15_pulse_100mv_high,

ch_1_pulse_125mv_low,

ch_15_pulse_125mv_low,

ch_1_pulse_125mv_high,

ch_15_pulse_125mv_high,

ch_1_det_125mv_low,

ch_4_det_125mv_low,

ch_1_det_125mv_high,

ch_4_det_125mv_high,

charge_low, charge_high, error_bars

};

char data_names[NUM_DATA_SETS+3][128] =

{

"ch_1_pulse_100mv_low",

"ch_4_pulse_100mv_low",

"ch_10_pulse_100mv_low",

"ch_15_pulse_100mv_low",

"ch_1_pulse_100mv_high",

"ch_4_pulse_100mv_high",

"ch_10_pulse_100mv_high",

"ch_15_pulse_100mv_high",

"ch_1_pulse_125mv_low",

"ch_15_pulse_125mv_low",

"ch_1_pulse_125mv_high",

"ch_15_pulse_125mv_high",
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"ch_1_det_125mv_low",

"ch_4_det_125mv_low",

"ch_1_det_125mm_high",

"ch_4_det_125mv_high",

"charge_low",

"charge_high",

"error_bars"

};

printf("Data Set or Parameter\n");

for(i=0;i<NUM_DATA_SETS+3;i++){

printf(data_names[i]);

for(j=0;j<NUM_DATA_POINTS;j++){

printf(" %3.2f",data_set[i][j]);

}

printf("\n");

}

printf("\nFit Results\n\n");

TCanvas * c = new TCanvas();

TGraphErrors * g1;

TF1 * pol = new TF1("pol", "pol1", 0.,MAX_CHARGE);

for(i=0;i<NUM_DATA_SETS;i++){

g1 = new TGraphErrors(

NUM_DATA_POINTS, charge_picker[i],

data_set[i], NULL, error_bars );

g1->Draw("A*");

pol->SetLineColor(2);

pol->SetLineWidth(2);

g1->Fit("pol", "RQ");

g1->GetYaxis()->SetTitle("TOT (us)");

g1->GetXaxis()->SetTitle("Q (fC)");

strcpy(file_name, data_names[i]);
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strcat(file_name, ".ps");

TPostScript gain_ps(file_name,112);

gain_ps.Range(24,16); //set x,y of printed page

sprintf(fit_results,

"G = %3.2f +/- %3.2f, Offset = %3.2f +/- %3.2f",

pol->GetParameter(1), pol->GetParError(1),

pol->GetParameter(0), pol->GetParError(0));

printf(data_names[i]);

printf(" %3.2f +/- %3.2f, %3.2f +/- %3.2f\n",

pol->GetParameter(1), pol->GetParError(1),

pol->GetParameter(0), pol->GetParError(0));

strcat(data_names[i], fit_results);

g1->SetTitle(data_names[i]);

c->Update();

gain_ps.Close();

c->Clear();

g1->Clear();

}

//DO THE PAPER DATA

TGraph * g2 = new TGraph(

26, paper_charge,

paper_data);

g2->Draw("A*");

pol->SetLineColor(2);

pol->SetLineWidth(2);

g2->Fit("pol", "RQ","" ,5., 63.);

g2->GetYaxis()->SetTitle("TOT (us)");

g2->GetXaxis()->SetTitle("Q (fC)");
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TPostScript gain_ps("paper_data.ps",112);

gain_ps.Range(24,16); //set x,y of printed page

sprintf(fit_results,

"Analog TOT Data G = %3.2f +/- %3.2f, Offset = %3.2f +/- %3.2f",

pol->GetParameter(1), pol->GetParError(1),

pol->GetParameter(0), pol->GetParError(0));

printf("Analog Data");

printf(" %3.2f +/- %3.2f, %3.2f +/- %3.2f\n",

pol->GetParameter(1), pol->GetParError(1),

pol->GetParameter(0), pol->GetParError(0));

g2->SetTitle(fit_results);

c->Update();

gain_ps.Close();

c->Clear();

g2->Clear();

}//end_main

165



F.1 COMP GAIN Output

Data Set or Parameter

ch_1_pulse_100mv_low 0.26 0.86 1.47 2.00 2.52 3.08 3.54

3.94 4.34 4.78

ch_4_pulse_100mv_low 0.45 1.20 1.89 2.60 3.20 3.80 4.30

4.80 5.26 5.64

ch_10_pulse_100mv_low 2.62 3.22 3.70 4.22 4.74 5.20 5.52

5.94 6.34 6.64

ch_15_pulse_100mv_low 1.96 2.58 3.12 3.62 4.06 4.50 4.84

5.28 5.58 5.92

ch_1_pulse_100mv_high 2.04 3.96 5.25 6.55 7.65 8.80 10.00

11.20 12.50 13.90

ch_4_pulse_100mv_high 2.47 4.68 6.26 7.70 9.00 10.30 11.80

13.45 14.90 16.50

ch_10_pulse_100mv_high 4.35 5.95 7.35 8.55 9.80 11.15 12.65

14.10 15.60 17.05

ch_15_pulse_100mv_high 3.52 5.18 6.50 7.65 8.75 9.85 11.20

12.50 13.85 15.20

ch_1_pulse_125mv_low 0.12 0.77 1.47 1.92 2.44 2.96 3.43 3.88

4.32 4.68

ch_15_pulse_125mv_low 2.04 2.64 3.20 3.66 4.12 4.56 4.88 5.38

5.58 5.96

ch_1_pulse_125mv_high 1.82 3.76 5.30 6.50 7.15 8.80 9.95 11.15

12.45 13.85

ch_15_pulse_125mv_high 3.54 5.14 6.40 7.58 8.70 9.80 10.95 12.25

13.55 14.96

ch_1_det_125mv_low 1.32 2.50 3.60 4.38 5.20 5.84 6.42 6.80 7.30

7.65

ch_4_det_125mv_low 1.46 2.08 2.74 3.36 4.02 4.64 5.16 5.64 6.02

6.50

ch_1_det_125mm_high 4.16 6.66 8.30 9.65 10.75 12.05 13.20 14.65

16.15 18.00

ch_4_det_125mv_high 3.30 5.66 7.05 8.40 9.45 10.40 11.45 12.45

13.55 14.70

charge_low 1.56 3.12 4.68 6.24 7.80 9.36 10.92 12.48 14.04 15.60

charge_high 6.25 12.50 18.75 25.00 31.25 37.50 43.75 50.00

56.25 62.50

error_bars 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01

Fit Results

ch_1_pulse_100mv_low 0.32 +/- 0.00, -0.08 +/- 0.01
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ch_4_pulse_100mv_low 0.37 +/- 0.00, 0.13 +/- 0.01

ch_10_pulse_100mv_low 0.29 +/- 0.00, 2.36 +/- 0.01

ch_15_pulse_100mv_low 0.28 +/- 0.00, 1.76 +/- 0.01

ch_1_pulse_100mv_high 0.20 +/- 0.00, 1.26 +/- 0.01

ch_4_pulse_100mv_high 0.24 +/- 0.00, 1.46 +/- 0.01

ch_10_pulse_100mv_high 0.22 +/- 0.00, 3.01 +/- 0.00

ch_15_pulse_100mv_high 0.20 +/- 0.00, 2.50 +/- 0.01

ch_1_pulse_125mv_low 0.32 +/- 0.00, -0.17 +/- 0.01

ch_15_pulse_125mv_low 0.28 +/- 0.00, 1.84 +/- 0.01

ch_1_pulse_125mv_high 0.20 +/- 0.00, 1.06 +/- 0.01

ch_15_pulse_125mv_high 0.20 +/- 0.00, 2.55 +/- 0.01

ch_1_det_125mv_low 0.44 +/- 0.00, 1.32 +/- 0.01

ch_4_det_125mv_low 0.36 +/- 0.00, 1.05 +/- 0.01

ch_1_det_125mm_high 0.23 +/- 0.00, 3.53 +/- 0.01

ch_4_det_125mv_high 0.19 +/- 0.00, 3.14 +/- 0.01
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