
Analysis of
Astrophysics and Particle Physics Data

using Optimal Segmentation

Jeffrey.D.Scargle@nasa.gov

Space Science Division
NASA Ames Research Center

Santa Cruz Institute for Particle Physics
May 17, 2005

Outline

Goal: Detect/Characterize Local Structures
Data Cells
Piecewise Constant Models
Fitness Functions
Optimization
Error analysis
Interpretation
Extension to Higher Dimensions

The Main Goal is to Detect and Characterize Local Structures

Background level

From Data to Astronomical Goals

Data

Intermediate product
(estimate of signal, image, density …)

End goal
Estimate scientifically relevant quantities

Smoothing and Binning
Old views: the best (only) way to reduce noise is to smooth the data

the best (only) way to deal with point data is to use bins

New philosophy: smoothing and binning should be avoided because they ...
discard information
degrade resolution
introduce dependence on parameters:

degree of smoothing
bin size and location

Wavelet Denoising (Donoho, Johnstone) multiscale; no explicit smoothing
Adaptive Kernel Smoothing

Optimal Segmentation (e.g. Bayesian Blocks) Omni-scale -- uses neither
explicit smoothing nor pre-defined binning

Data: Measurements Distributed in a Data Space

Independent variable (data space)
e.g. time, position, wavelength, …

Dependent variable
e.g. event locations, counts-in-bins, measurements, …

Examples: time series, spectra
images, photon maps
redshift surveys
higher dimensional data

DATA CELLS: Definition

data space: set of all allowed values of the independent variable

data cell: a data structure representing an individual measurement

For a segmented model, the cells must contain all information
needed to compute the model cost function.

The data cells typically:
are in one-to-one correspondence to the measurements
partition the entire data space (no gaps or overlap)
contain information on adjacency to other cells

… but any of these conditions may be violated.

Simple Example of 1D Data Cells and Blocks

Fitness Functions

Block likelihood = product of likelihoods of its cells

Block Likelihood depends on
N = The Number of Events in the Block
M = The Size of the Block

Model likelihood = product of likelihoods of its blocks

Remove the dependence on the block event rates:
Marginalize, or
Maximize the Likelihood

Adopt prior distribution for Nb, the number of blocks.
(Parameter of this distribution acts like
a smoothing parameter.)

Take log to yield an additive fitness function.

The Optimiser
best = []; last = [];
for R = 1:num_cells

[best(R), last(R)] = max([0 best] + fitness(cumsum(data_cells(1:R, :)));

if first > 0 & last(R) > first % Option: trigger on first significant block
changepoints = last(R); return

end

end

% Now locate all the changepoints
index = last(num_cells);
changepoints = [];

while index > 1
changepoints = [index changepoints];
index = last(index - 1);

end
Do not use at home: a few details omitted!

For many iterations:
Randomly select N of the observed events with replacement
Analyze this sample just as if it were real data

Compute mean and variance of the bootstrap samples

Bias = result for real data – bootstrap mean
RMS error derived from bootstrap variance

Caveat: The real data does not have the repeated events
in bootstrap samples. I am not sure what effect
this has.

Bootstrap Method:
Time Series of N Discrete Events

Piecewise Constant Model
(partitions the data space)

Signal modeled as constant over each partition element (block).

Optimum Partitions
in Higher Dimensions

● Blocks are collections of Voronoi cells (1D,2D,...)
● Relax condition that blocks be connected
● Cell location now irrelevant
● Order cells by volume
Theorem: Optimum partition consists of blocks

that are connected in this ordering
● Now can use the 1D algorithm, O(N2)
● Postprocessing: identify connected block fragments

Blocks
Block: a set of data cells

Two cases:
● Connected (can't break into distinct parts)
● Not constrained to be connected

Model = set of blocks

Fitness function:

F(Model) = sum over blocks F(Block)

Connected vs. Arbitrary Blocks

2D Synthetic Bootstrap Example: Raw Data

Local Mean & Variance of Area/Energy (idea due to Bill Atwood)

