The Evolution of Structure in Clusters of Galaxies

Jeltema et al. 2005

with C. Canizares, M. Bautz, and D. Buote

Jeltema et al. 2007 with E. Hallman, J. Burns, P. Motl, and M. Norman

Outline

- The observed evolution of cluster morphology
 - Introduction: cosmology with clusters
 - cluster mergers
 - Measuring structure
 - Chandra study
- Comparison to simulations
- Structure/mergers on other scales

Cosmology with Clusters

- Represent highest density initial perturbations.
- Constrain Ω_m and σ_8 from evolution in cluster number density and cluster baryon fraction.

 ΛCDM

SCDM

Dependence of Cluster Density on Cosmology

- High-redshift clusters lead to the strongest constraints.
- Slight dependence on Λ

Rosati et al. 2002

Comparison to Other Constraints

Cluster Observations

Optical

observe galaxies (~2% of mass) velocity dispersion, $\sigma_v \rightarrow M$ need ~500 galaxies for structure

• X-ray

thermal bremsstrahlung from hot gas (~12% of mass) $L_x, T_x \rightarrow M$ flux limited samples, probes potential

Cluster Observations

Lensing

distortion of background galaxies (strong or weak) probes mass along the line of sight sensitive to projection, low resolution

Sunyaev-Zeldovich Effect

inverse Compton scattering of CMB off hot gas low resolution

Example Mergers

"Bullet" Cluster, z=0.30

Clowe et al. 2006

MS1054-0321, z=0.83

Jeltema et al. 2001

- MS1054 at z=0.83 alone implies $\Omega_m < 1$, but it is undergoing a major merger.
- Observe temperature variation and offsets from mass distribution

Cluster Substructure

- Clusters form through mergers.
 - Observed as substructure or disturbed cluster morphology
- Formation epoch of clusters depends on cosmology.
- Cluster morphology affects the study of many cluster properties.
 - Mass
 - Gas mass fraction
 - Galaxy evolution, etc.

Cluster formation in ACDM

Movie credit to Martin White

Cluster Structure and Cosmology

The fraction of clusters with substructure and the rate at which this fraction evolves with $z \rightarrow \Omega_m$, Λ

Substructure affects mass estimates.

Richstone et al. 1992

Mergers and Mass Estimates

Mergers cause variations in L_x, T_x, and velocity dispersion.

• Smith et al. 2004 find unrelaxed lensing clusters 40% hotter, and Hashimoto et al. 2007 find offset in L_x -T_x relation.

Observing Mergers

Cassiopeia A: Chandra vs. ROSAT

- Chandra on axis resolution: 0.5"
- ROSAT HRI: 4" and XMM-Newton: 20"

Clusters with Chandra MS1054 at z=0.83

• Exclusion of point sources and increased sensitivity to structure in high-z clusters.

Measuring Structure

- Jones & Foreman (1992): single, elliptical, offset center, primary w/ small secondary, double, complex
- Ellipticity
- Centroid or Center-of-mass shift (Mohr et al 1995)
- Power ratios (Buote & Tsai 1995)

Sample

- 40 clusters from Chandra archive with 0.1 < z < 0.9 z < 0.5: 26 clusters with <z> = 0.24 z > 0.5: 14 clusters with <z> = 0.71
- Selected from flux-limited X-ray surveys and have $2x10^{44}$ ergs/s < L_x < $2x10^{45}$ ergs/s.

Power Ratio Method

- Capable of distinguishing different cluster morphologies
- Constructed from moments of the X-ray surface brightness

$$a_m(R) = \int \sum_{R' \leq R} \Sigma(x') (R')^m \cos(m\phi') d^2 x'$$
$$b_m(R) = \int \sum_{R' \leq R} \Sigma(x') (R')^m \sin(m\phi') d^2 x'$$

$$P_0 = [a_0 \ln(R)]^2$$
$$P_m = \frac{1}{2m^2 R^{2m}} (a_m^2 + b_m^2)$$

 Related to the multipole expansion of the 2D gravitational potential

$$\frac{P_m}{P_0} = \frac{\left\langle (\Psi_m)^2 \right\rangle}{\left\langle (\Psi_0)^2 \right\rangle}$$

(Buote & Tsai 1995, 1996)

Power Ratios cont.

- Calculate powers in a circular aperture with R = 0.5 Mpc centered on the cluster centroid.
- Find P_2/P_0 , P_3/P_0 , and P_4/P_0 . $P_1/P_0 = 0$ with origin at centroid.

 P_2/P_0 vs. P_3/P_0

Estimating Uncertainties

Estimated uncertainties through a Monte Carlo technique

- Created 100 mock cluster observations for each cluster with appropriate Poisson noise.
- 90% confidence limits defined as 5th highest and 5th lowest power ratios.

 P_3/P_0 vs. P_4/P_0

Statistical Significance

- A rank-sum test shows that high-redshift sample has significantly higher mean P_3/P_0 and P_4/P_0 .
- A Kolmogorov-Smirnov test shows that the distributions of P₃/P₀ and P₄/P₀ are significantly different for the two samples.

Power Ratios(1)	Average Low-z(2)	Average High-z(3)	Rank Sum Prob.(4)	K-S Prob.(5)	Average RS Prob.(6)	Average K-S Prob.(7)
P_2/P_0	3.92E-6	6.16E-6	0.10	0.34		
P_3/P_0	6.93E-8	5.95E-7	4.6E-5	0.00064	0.00036	0.0023
P_4/P_0	5.20E-8	1.30E-7	0.025	0.041	0.0082	0.037

Statistical Significance

- Including the uncertainties, the difference between the high and low-z samples is still significant.
- Also find a significant correlation between $P_2/P_0-P_3/P_0$, $P_2/P_0-P_4/P_0$, and $P_3/P_0-P_4/P_0$.

Power Ratios(1)	Average Low-z(2)	Average High-z(3)	Rank Sum Prob.(4)	K-S Prob.(5)	Average RS Prob.(6)	Average K-S Prob.(7)
P_2/P_0	3.92E-6	6.16E-6	0.10	0.34		
P_3/P_0	6.93E-8	5.95E-7	4.6E-5	0.00064	0.00036	0.0023
P_4/P_0	5.20E-8	1.30E-7	0.025	0.041	0.0082	0.037

Comparison to Buote & Tsai (1996)

Lowest P_3/P_0

^{1.4} Mpc

Highest P_3/P_0

Summary of Observations

- High-redshift clusters have more substructure and are dynamically younger than low-redshift clusters. (confirmed by Hashimoto et al. 2007; Maughan et al. 2007)
- The evolution in P₃/P₀ is significant even considering uncertainty from noise and systematic effects.
 Slope = 4.09^{+3.94}-3.27 x 10⁻⁷ (90%)
 Slope greater than zero at 99.5% confidence
- Structure evolution should be considered in cosmological studies.

Comparison to Simulations (work in progress)

- Test of cosmological models as well as the accuracy of current simulations (gas physics, etc.).
- The simulations: Motl, Hallman, Norman, and Burns
 hydrodynamic, ACDM, AMR simulations
 - Four runs: adiabatic then adding cooling, star formation and feedback
 - Large volume and good resolution (~ 16 h⁻¹ kpc)
 - Other simulations? (Valdarnini, Kravtsov, ...)

Simulated Clusters

z ≤ 0.25
0.25 < z ≤ 0.65
0.65 < z ≤ 1.5

- Strong correlation in power ratios.
- Some evolution, but not strong.

z ≤ 0.25
0.25 < z ≤ 0.65
0.65 < z ≤ 1.5

- Strong correlation in power ratios.
- Some evolution, but not strong.

z ≤ 0.25
0.25 < z ≤ 0.65
0.65 < z ≤ 1.5

- Strong correlation in power ratios.
- Some evolution, but not strong.

z ≤ 0.25
0.25 < z ≤ 0.65
0.65 < z ≤ 1.5

- Strong correlation in power ratios.
- Some evolution, but not strong.

Comparison to Observations Low Redshift (z<0.1)

- Similar power ratio distributions.
- Possibly more clusters in the wings of distribution in simulations.

Luminosity

Luminosity

Luminosity

Luminosity

P3/P0

Luminosity

P3/P0

3.5×10⁴

Luminosity

3.5×10⁴

P3/P0

Luminosity

P3/P0

3.5×104

Luminosity

3.5×10⁴

Jeltema et al. 2007

 3.5×10^{4}

Luminosity

Jeltema et al. 2007

3.5×10⁴

Luminosity

P3/P0

3.5×104

Luminosity

Jeltema et al. 2007

3.5×1045

Luminosity

Jeltema et al. 2007

P3/P0

.5×10⁴

Luminosity

Jeltema et al. 2007

Evolution of Luminosity

Luminosity

3.5×10⁴⁵

3.0×10⁴⁵

2.5×10⁴⁵

0×10⁴⁵

1.5×

Evolution of Luminosity

Evolution of Mass

Mass

Mass vs. Temperature Evolution

Mass vs. Y_x Evolution

 $Y_x = M_g T_x$, similar to integrated SZ flux and proportional to the total thermal energy of the cluster.

see Motl et al. 2005, Kravtsov et al. 2006

Questions and Plans

Simulations:

- How is cluster structure effected by
 - gas physics?(not much)projection?(significantly)
- How similar is simulated structure to observed structure?
- How do cluster observables and observable-mass relations correlate with structure?
- How frequent are major mergers/core passage phase?
 How does dynamical state affect selection in surveys?

Observations:

• Expanding sample with 400 deg² survey.

Structure on Smaller Scales: Groups

Jeltema et al. 2007, Jeltema et al. 2006, Mulchaey et al. 2006