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Qutline

« Motivation: EGRET sources and gamma-ray pulsars
« Detection as an hypothesis testing problem

* A score test and discussion of its properties

« Difficulties of a blind search

» Integration over frequency bands as an alternative to
discretization

e Use of simulation and extreme value theory to assess
significance
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Many gamma-ray sources are unidentified and may be pulsars, but
establishing that these sources are periodic is difficult. Might only
collect ~1500 photons during a 10 day period.



Detection problem
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Detection problem as hypothesis test

Unpleasant fact: There is no optimal test. Even if the frequency
were known, a detection algorithm optimal for one pulse profile
will not be optimal for another one. No matter how clever you are,
no matter how rich the dictionary from which you adaptively
compose a detection statistic, no matter how multilayered your
hierarchical prior, your procedure will not be globally optimal.

The pulse profile v(t) 1s an infinite dimensional object. Any test
can achieve high power against local alternatives for at most a
finite number of directions. In other words, associated with any
particular test 1s a finite dimensional collection of targets and it 1s
only for such targets that 1t 1s highly sensitive.

Consequence: You have to be a [closet] Bayesian and choose
directions a priori.

Lehman & Romano. Testing Statistical Hypotheses. Chapt 14



Specifying a target

Consider testing against a template for the pulse profile, a
probability density:

v(t) =1+n Z et
n#0

U (t) — 1+ n Z aneQﬂ'in(t+7)
nF#0
Model the arrival times as a Poisson process with rate function:

A(t)6, 7, 1, f); uc(t)[(1—0) +0v-(o())], 0<6<1

rate  instrument sensitivity proportion from source

B(t) = do+ ft or B() = o+ fi+ 5t
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Likelihood function and score test

Associated with each event is auxiliary information,
the incidence angle and the measured energy; denote these
variables by z. Let fg(z) denote the probability density
function of z for a background event and fg(z) the density
function for a source event. The likeihood of the marked
point process 1S

N
L = ¥ []e)1—0)f5(z)+0fs(z)v-(8(t;)] %

T
exp(—p / e(t)[(1 — 0) + Bu ((2))]dt)

A score test is found by evaluating the derivative of the
log likelihood with respect to n at 0



Posterior probability
that the photon was
/ from the source

w 0fs(z;)
0= ; ((1 —0)fB(2) +6fs(2;) r{9lt) - 1)> -

W

Score test

T
#9/ c(t)[v-(b(t)) — 1]dt <«—— Neglible for large T
0

To eliminate the dependence on 7, square and inte-
grate, resulting in

1 2 2
QT - T 7%% |an| |An|

where

An = wjexp(2ming(t;))



Relationship to classical tests in the
un-weighted case

1 :
Qr = T Z |an|2|An|2 Ap = ij exp(2ming(t;))
n#0 J

Rayleigh’s test (1919): a, =0,n > 2
Bucherri et al. (1983): Z2: a, =1, n<m
De Jager et al. (1989): choose m adaptively

Beran (1969) showed test to be locally most powerful among
invariant tests for uniformity on the circle



Weight function

0fs(2;)
(1—0)fB(2;) +0fs(2;)

2SS (Ea (P)
fB(z) = [B(E)fB(p|E)
fs(z) = [fs(E)fs(p|E)

w; =

w(E, o) — 0fs(E)fs(¢lE)
’ 0fs(E)fs(¢lE) + (1 —0)fB(E)fs(¢|E)

Depends on spectra of source and background through their ratio



Weight function

The optimal weight function depends on the ratio of
background and source spectra. If this is unknown, can

use B 0fs(p|E)
w(E, p) = Ofs(e|E)+ (1 —0)fs(e|E)




Weight function

The weight function depends on 6, the proportion of
photons from the source. This may be known from previ-
ous studies. It might also be estimated from the log like-
lihood function under the null hypothesis (source is not

periodic)

N
£0) = Nlogp+ Y loge(t;)+

N jzl T
> log{(1 = 6)f(z;) + 615 —u [ clt)dt

For a weak source (small )

o fs(E)fs(e|E)
fB(E)fB(0|E)




Detection sensitivity: power of the test

Let the pulse shape of the source be

,Y(t) _ Z ,Yn627rz'nt

n#0
Then,

Signal to > EK(QT) — EH(QT) ~ 92

Noise Ratio

[Yn|*|atn|?
Tpo&(w
o po&( )[Zn;éo Ian|4]1/2

where H denotes the null hypothesis and K the alternative
hypothesis and for any weight function w(z)

_ [E(W |Source)]?
E(W?)

E(w)



Power

Ex(Qr) — Eu(Qr) _ o > 0 [n[*lom|?
p— ~ 0“Tpo€(w) (3 zo || 4]1/2

2T threshold for detecting weak signal is § ~ T~1/2

D ns#0 Vn|?|an|?: corr of actual lightcurve with template

[E(WWont))* , : : .
E(w) = Ew2y - correlation of weight function with

optimal weight function




Power: effect of frequency

misspecification

f=fo+A/Tand f=fo+A/T? A< 1

> ml?len* (1 +O((nA)?))

n#0

High accuracy is required to gain power from
higher harmonics



Intensity

Example: template
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Example: template

Table 1: Relative efficiencies for truncated equal weights

number of coefficients | 1 2 | 3 4|5 |6 | 7|89
Crab 28 | 65 | 89 | 83 | 88 | 84 | 80 | 78 | 74
Geminga 23 | 82 | 67 | 71 | 66 | 63 | B9 | 57 | 54
Vela 42 | 67 | 8 | 79 | 87 | 80 | 84 | 79 | 79

Table 2: Relative efficiencies obtained from using the first
five and first ten average coefficients as the template.

number of terms | 5 | 10
Crab 96 | 97
Geminga 85 | 85
Vela 89 | 93




Example: weight function

Consider a source which emits photons at rate  and a
background whose rate is p per unit area and suppose that
photons are collected in a disc of radius R (rather than a
spherical cap, for simplicity). Then

p = mTR*p+a
9 _ o
- TRp+«
2
fo(plB) = %3, 0<¢<R

The optimal weight function is then

wopt(E’ p) = fs(E)fs(e|E) + Befs(E)

where 8 = 2mp/a




Example: weight function

If the psf is bivariate circular Gaussian with standard de-
viation o(F), then ¢, the distance to the origin, has the
probability density function

2

Fs(PlB) = -y (= 500 )

(This assumes that o(E) < R, otherwise the density trun-
cated at R has to be normalized to have unit area.) Then
the optimal weight function is

N _ fs(E)
opt &) = 7(E) + Bo(B) expl¢?/207 () fa (B)




Example: weight function

If photons are not differentially weighted according to the
ratio of the energy spectra, one has the weight function

1

w(B, ) =77 Bo(E) exp(¢?/202%(E))

The decay of the weight function depends on the parameter
¢ =2mpo(E)/a.
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Difficulties

Frequency unknown

Spin down

Large search space
Glitches

Celestial foreground
Barycentric time correction

Pulse profile unknown

Computational demands for a blind search are very substantial. A
heroic search using a 512 processor supercomputer did not find

any previously unknown gamma-ray pulsars in EGRET data.
(Chandler et al, 2001).



Search Space
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Frequency Derivative (x -1E-15 Hz/s)
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F1G. 1.—The f-f phase space relevant to our search. The 472 pulsars in
the Princeton catalog (Taylor et al. 1993) that have positive period deriv-
atives are denoted by filled circles. The known EGRET pulsars are indi-
cated by triangles. They are, in order of decreasing rotation frequency,
Crab, PSR 1951+ 32, Vela, PSR 1706 —44, Geminga, and PSR 1055 —52.

From Chandler et al (2001)



Search Space

Consider no drift. Good frequency resolution depends on matching phase of
photons at beginning and end of the record. If true frequency is f,, the number of
cycles in time T is T/f, so if the hypothesized frequency is f = f;, + of, df should
be o(T!) in order for a photon at the end of the record to be in phase with one at
the beginning. The phase error at the end of the record is Tof.

10 days = 864,000 sec,- 0f = T-!-If a 40 Hz range has to be searched, a minimum
of 40 x 864000 = 34,560,000 possible frequencies must be examined.

Similarly, drift must be resolved within o(T-?). To search the interval of possible
frequency derivatives at this resolution, about 400-500 values must be examined.

Consequence is that a test statistic must be evaluated ~10° values of frequency
and its derivative.
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Example: Vela
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Frequency Drift
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Power vs Computational Cost

Power o 62T

f resolution oc 71
f resolution oc T2
Calculation of statistic for a single (f, f) & T

FLOPS o T*

Partition 7" into B blocks of length ¢. Compute statistic
in each block and average.

2 _1/2q11/2
Poweroc\/F 92q1/271/

FLOPS x T



Blocking Vela and Crab

Vela: 318 blocks

Crab: 25 blocks
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Integration versus discretization

Rather than fine discretization of frequency, consider integrating the
test statistic over a frequency band using a symmetric probability

density g(f).

) )2 Decreasing function of [t -
@ = [ 14Dl =

ijwkg 2mn(t; — tx))
J k

where
o0

a(t) = / & g(f)df

—0OC



Qn =) wjwed(2mn(t; — tx))
b k

Requires a number of operations quadratic in the number of photons. However
the quadratic form can be diagonalized in an eigenfunction expansion, resulting
in a number of operations linear in the number of photons.

T
Qn ="tk / e2minthog, (£)dW (t)
k 0

2

(In the case that g() is uniform, the eigenfunctions are the prolate spheroidal wave
functions.) Then

EQr = p*0°T ) lanlzl%l'z/
9(f) = Tgo(T(f — fo))

Power is still lost in high frequencies unless the support of g is small.

sin(nmu) |

go(u)du

nmTu

This procedure can be extended to integrate over tiles in the ( f, f ) plane when

Mﬂ=ﬂ+%ﬁ2
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Assessing significance

At a single frequency, significance can be assessed easily through
simulation. In a broadband blind search this 1s not feasible and
furthermore one may feel nervous in using the traditional chi-square
approximations in the extreme tail (it can be shown that the limiting
null distribution of the integrated test statistic 1s that of a weighted
sum of chi-square random variables). We are thus investigating the
use of classical extreme value theory in conjunction with affordable
simulation.



Gumbel Approximation

Consider M,, = max{T},75,...,T,} where the T; are iid
random variables. Classical theory gives that if M,, has a
limiting distribution it is of one of three types. In the case
of mixtures of chi-square random variables, the limiting

distribution will be of Gumbel type.
F™(ant + bn) — exp|—exp(—2x)]
P(T>t+s|T>t)~e
We thus approximate tail probabilities by
P(T > t+3s) ~ P,(T > t)e %/

where P,, is the empirical measure and a,, is the mean of
the corresponding empirical conditional distribution.



Tail Approximations

Table 1: Conditional means and tail probability approxi-
mations for various cuttoff values t.

o P(T > 10) | P(T > 15)
4852 | 3.0x 1079 | 9.9 x 10714
4548 | 1.3 x107° | 2.1 x 10714
4438 | 9.4 x1071% | 1.2 x 10714

Ot > QO o+

According to this approximation, in order for a Bonferonni
corrected p-value to be less than 0.01, a test statistic of about 11
standard deviations or more would be required.



log[- log F(t)] versus t
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Thank you



Score

Score

Example: Geminga

Main frequency only, N=1

Main frequency plus equally weighted first harmonic
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SD

120

Oversampling by factor of 4 near Geminga first

harmonic
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