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) Overview

@ Diffuse gamma-ray emission
@ The Galactic diffuse gamma-ray GeV excess
@ Discussion of the EGRET instrument

® Simulation of EGRET

@ Re-scaled measurement of diffuse gamma-
ray emission from the inner Galaxy




} Diffuse Gamma-ray
Emission

® Galactic diffuse

@ Cosmic-ray interactions with inter-stellar medium (ISM) provide
dominate component

@ Unresolved sources are thought to contribute a low amount at
energies above 50 MeV (Pohl et al. ApT 491:159-164, 1997;
Hunter et al. ApT 481:205-240, 1997)




} Diffuse Gamma-ray Production
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5} Diffuse Gamma-ray Production
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5} Diffuse Gamma-ray Production

Y's from e* bremsstrahlung
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5} Diffuse Gamma-ray Production

Y's from m° decay

ANANANANANNANNANNNNANN
p+H -> 1%+X n°%->2Y
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5} Diffuse Gamma-ray Production

Interstellar radiation energy distribution in the Galactic plane
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} The Galactic GeV Excess

@ Hunter et al. published
original EGRET Galactic
diffuse gamma-ray emission in
1997, their measurement
shows a clear excess from
their models above 1 GeV
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/ EGRET

@ Strong, Moskalenko, and
Reimer have presented the
conventional model based on
their Galprop simulations
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@ Isotropic diffuse

@ Presumably extragalactic in origin

@ Over an Order OF magnlfude IOWer Model based on ISM observations, Cosmic ray component spectra, and well studied
in ﬂux fhan Galac.l.lc d”IFusa physical processes (bremsstrahlung, inverse Compton, pion decay); no attempt has been

6 made to fit this model to the gamma ray observations.
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The GeV excess is observed across the sky



y! Gamma-ray Detectors

from 10s MeV to 100s GeV

Converter

Tracking layer

Anti-coincidence detector

@ Gamma-rays trajectories cannot be
directly detected

@ Reconstruction of original gamma-
ray frajectories is possible:

3 ei"s produced when gamma_rays convert in 00 e
high Z materials(lead, tungsten)

@ efs can be tracked with a variety of
charged particle tracking technologies
(spark wire chamber, silicon, etc.)

Calorimeter
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EGRET Detector
® EGRET launched aboard
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® EGRET consists of four

main detector systems:

coincidence dome

@& Anti

@ Spark chamber tracker

o Time of flight
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® Nal calorimeter

Courtesy of the EGRET collaboration




} Characterization of the
EGRET Detector

@ Mapping of EGRET
Instrument response
occurred at two primary
facilities: Stanford Linear
Accelerator Center and
Bates Linear Accelerator

@ Goal of systematically
mapping the instrument T ; |
response Fuanions (IRFS) Courtesy of the EGRET collaboration, via Dave Thompson

10




SLAC Beam Test
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) Bates Beam Test

® Re-calibrate IRFs

@ Calibrate newly optimized spark-chamber performance

@ 20 keV (SLAC value) and 100 keV (new value) A-dome veto thresholds
tested

® 5.7+2% increase in effective area was measured at 790 MeV
with the new 100 keV A-dome veto threshold

@ Calibrate rebuilt portions of instrument
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} Simulation of EGRET

@ There have been no published Monte Carlo
simulations of the EGRET tracker

@ While the BATSE team has published results from
a GEANT3 simulation of CGRO, their simulations
were not adapted for use with EGRET
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Simulation of EGRET
@ Uses the simulation framework
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Layer Efficiency and Spark
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no spreading
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@ Greatly affects the quality of reconstruction which
can be accomplished
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@ Does not have large effect on number of tracks
found

'SF vs Log(E) Prob C

@ Spark Spreading

@ While measurable from the EGRET data and
implemented in our simulations spark spreading has
little quantitative effect on the results

Best PSF err (Degrees)

30% spreading
94% sparks
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5} A-dome Light Attenuation

@ When particles interact with the A-
dome and deposit energy they do not
generally deposit it close to the PMTs
used fo measure it

@ As the light travels through the
scintillator it is attenuated

@ I have modeled this attenuation in our
simulations

@ Exponential fall off for shortest distance to
bottom of A-Dome (where the light
measurement is taken)

@ Overall efficiency at interface of dome with

cylinder
16



\ Validation of Simulations

@ Using SLAC beam test
geometry

@ Point Spread Function (PSF)

measured PSF(100)=5.85 and E-
index 0.534

@ Effective area, fit using two
parameter fit: efficiency and

A-dome veto threshold
| X2 Fit Landscape I X min(x?) at A-Dome Veto=0.0800901, Eff=0.930!
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EGRET in Orbit

@ When in orbit EGRET was :
onboard the Compton Gamma-
ray Observatory(CGRO) |

® OSSE

& COMPTEL

& EGRET

Courtesy of the EGRET collaboration

® BATSE

18




5} Accounting for CGRO

@ Current simulations use a
simple block model for CGRO

@ Has proper mass and average
density

® COMPTEL and OSSE

@ General shape and average density
were used

D 86-0

@& BATSE

@ Nal scintillators with base

@ Expected to have minimal effect
on self-veto 19



5} Measuring Self-veto

Tracking layers
Converter

Anti-coincidence detector

® Self-veto was observed at
SLAC beam above 1 GeV

@ Self-veto occurs when a
gamma-ray converts within
the tracking volume and a
secondary particle, usually
X-ray, causes a trigger in
the Anti-coincidence system

Calorimeter
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} Measuring Self-veto

Effective Area

=== Beam Geometry

=== Flight Geometry

@ Plotted to the right is the
number of effective area
VS. energy

@ The line for the beam
geometry and the
with for the flight geometry

3.5 4
Iog10 Energy (MeV)




} Correcting for Self-veto

@ Generated 200k events in
E-%! for each of EGRETs 10
small energy bins in both
beam and flight geometries

@ E%!used to properly weight
scaling factors

@ Applied beam fit A-dome
veto threshold

@ Calculated ratio of tracked,
non-vetoed events, found in . e !
flight geometry to those | | log, Energy (MeV)
found in beam geomeftry




} Diffuse Emission from the
Inner Galaxy

@ Applying the found scaling
factors to the corresponding
EGRET exposure maps allows
for calculation of new fluxes

@ The plot to the right shows
both the and
E? flux for the inner
Galaxy
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} Exacerbating the GeV Excess

Strong et al. ApJ, 613:962 - 976, 2004 October
galdef ID 44 500180
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-4.75<b<-0.25 , 0.25<b< 4.75

® Many theories have been
put forth recently to explain
the GeV excess none have
yet to be commonly accepted
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@ I thought that properly
accounting for instrumental
effects might reduce the
discrepancy, instead there

appears to be the opposite
effect




Strong, Moskalenko, Reimer ApJ 613, 2004

} Possible Physical Explanations

10
INNER GALAXY

C
s
@ Instrumental effects aside there J§
have been some physical "
explanation proposed g
@ It has been suggested that significant < , |
increases in inverse Compton emission oremss |
would better fit the observations (Mori, " ‘ :
ApJ 478, 225 (1997); Porter and Protheroe, JPhysG 10° . 10° " \;04 10° 10°
nergy, Me

23, 1765 (1997); Strong et al., ApJ 537, 763 (2000))

@ Unresolved sources: Pulsars, TeV
sources (Casanova and Dingus, astro-
ph/0609306, Harding)

25 Energy(GeV)
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8  Future Insight WikHPSLAST

@ GLAST is due to launch later this year, and expecting to reach
the sensitivity for the entire EGRET mission in approximately 2
months

@ Huge field of view will provide virtually uniform all sky
coverage in a single day

® The GLAST mission is sure to she_d new light on the GeV excess

simulated GLAST sky map, S.W. Digel (NASA/GSFC)
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Accounting for COMPTEL

@ The COMPTEL instrument is within close
enough proximity to EGRET to have an
small effect on the sky exposure

o I expect this effect to be less than 10%
since the majority of EGRET'S effective
area is within 20° of the instrument axis
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FiG. 8 —EGRET effective area as a function of the incidence angle for
the three different telescope modes. The solid curves are for the wide-angle
mode, the dashed curves are for the strip mode for sources along the long
axis, and the dash-dotted curves are for the narrow-angle mode. Two
energy regimes are shown as noted.

Esposito et al.,ApJS, 123 : 203-217, 1999 July




} Detailed CGRO Model

@ Since no detailed model of CGRO is available I have
attempted to bound the possible error associated with
our block model

@ Running simulations where the density of the material
used for CGRO is changed by +50% and taking the
spread to be a measure of the error
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} Above 10 GeV

Thompson et al. ApJS 157:324 - 334, 2005 April

ErreCcTIVE AREA RELATIVE TO THE 4—10 GeV VALUE

ExERGY RaNGE (GeV) ReLATIVE EFFECTIVE AREA
: 5 : Low High Spectral Index = 1.80  Spectral Index =2.10  Spectral Index = 2.40
% Cdllbl"a"'IOn OF EGRET dld I"IO'|' 10 20 0.807 0.808 0.809
10 50 0.683 0.706 0.723
occur above 10 GeV I 100 0516 0655 0678

10 120 0.602 0.645 0.681

20 50 0.514 0.512 0.528

@ While extrapolations of the g g s e
effective area have been made K e o o

assuming 70 0.120 0.121 0.121

70 0.102 0.104 0.105

o AeFF(E>IOG€V) oce(-E/366eV)
©O Thompson et al. [=2.1

1.00
@ This is generally achieved 0.75
through estimating the
effective area at the E-¢!
weighted mean energy of a 0.25
given bin then taking the ratio 0
over the 4-10 GeV value 10-20 20-50 50-120

29 Energy (GeV)

0.50




} Above 10 GeV

O Thompson et al. [=2.1

@ Similar fo previous extension L Re-scaled
of the EGRET effective area :
above 10 GeV I have 0.75
calculated scale factors 0.50
relative to the 4-10 GeV o
exposure maps
0
10-20 20-50 50-120

® Our extension is the first to
be based off a detailed
Monte Carlo

Energy (GeV)
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