Study of Cosmic Ray Proton and Helium at small atmospheric depths by BESS spectrometer

Raghunathan Srivatsan
Norfolk State University
BESS Collaboration

- **KEK**

- **The Univ. of Tokyo**

- **Kobe Univ.**

- **ISAS**
 T.Yamagami

- **NASA/Goddard Space Flight Center**

- **Univ. of Maryland**
 M.H.Lee, Z.D.Myers, E.S.Seo

- **Norfolk State University**
 M.Khandaker, C.W.Salgado, R. Srivatsan, D.Weygand
Balloon-borne Experiment with a BESS Superconducting Spectrometer

- **Antiparticle/Antimatter**
 - \bar{p}, \bar{D}
 - CR Propagation
 - CR Origin studies
 - \bar{He}
 - Baryon Asymmetry

- **Cosmic-ray Data**
 - p, He
 - Propagation
 - Solar Modulation,
 - Interactions in the atmosphere
 - μ
 - CR proton (0.5 – 100 GeV) and helium (0.2 – 50 GeV/n) spectra.
 - Improved upper limit on antihelium search.
 - Atmospheric muon spectra at various altitudes (1 – 10 GeV/c).
 - CR electron spectra in 0.1 – 10 GeV.

9 annual flights from 1993 – 2002. Results Published on:

- ~950 Antiproton events detected. (spectrum, solar cycle studies, …)
BESS-99 Flight

- Balloon ascended from ground level to a height of 36 Km in 3 hours.

 (Top Of the Atmosphere)

 Around $5g/cm^2$ of air above

- It remained at 36 Km height for 32 hours

- 1999 flight launched from Lynn Lake, Canada

 $56^\circ 48' N, 101^\circ 25' W$

- Geomagnetic cut off ~ 0.4GV

- Data collected while balloon ascend was analyzed at NSU.
BESS-99 Spectrometer

- Superconducting Solenoid (~1 Tesla)
- JET/IDC for Rigidity (pc/Ze) measurement
- TOF for velocity and energy loss measurement
- Aerogel Cherenkov detector for particle id
- Shower Counter for electron/positron detection.
Measurements and particle identification

• **Rigidity** R By reconstructing particle trajectory using JET and IDC data.

• **The transverse momentum resolution** is,

\[\frac{\Delta p_t}{p_t} \approx 0.5 \, p_t \quad \text{in (\%)}, \quad \text{where } p \text{ is in (GeV/c)} \]

(eg., 0.5% at 1 GeV/c, 5% resolution at 10 GeV/c).

• **Velocity** β is derived from: TOF between upper and lower scintillators and path length of particle trajectory in chambers.

• For a timing resolution of 100 ps in TOF, $\frac{\Delta \beta}{\beta} \sim 0.024$ for a single charged particle with $\beta \sim 1$

• $\frac{dE}{dx}$ is measured with a resolution of 6% for all counters for MIP’s.
• **The charge** z of the particle is identified using,

$$\frac{dE}{dx} \propto \frac{z^2}{\beta^2} R$$

A scatter plot of dE/dx against R separates various charges.

• **Mass** m of the particle can be reconstructed using,

$$m = zeR\sqrt{\left(\frac{1}{\beta^2} - 1\right)}$$

For a given charge z, a scatter plot of $\frac{1}{\beta}$ against R separates isotopes.

• **Sign of the charge** is determined from track curvature.

• **Up/Down direction** is provided by TOF measurement.

• **Cherenkov data** provides good separation between electrons and protons up to 3 GV rigidity. Also helps separating muons and pions
Data Analysis

• Choose the Trigger

 T0 Low Countdown trigger: 1/3 MIP in upper and lower TOF with a Count Down of 1/60

 Low energy proton trigger: TT trigger + Aerogel ADC less than a threshold value with a Count Down of 1/2

• Select clean, single track events

• Particle Identification and separation

• Flux and Background estimation
Select single track events

Select Events with

- Only one TOF hit in top and bottom layer.
- Only one track in JET/IDC
- Consistency between track and TOF hit position
- Track quality cuts (number of JET hits, quality of fit etc)
- TOF quality cuts (by studying the location of extrapolated track)

- Accept Events with clean single track
- Reject Particles interacted in the detector to produce secondaries.

Instrument material: \(18g/cm^2\) along vertical
Particle Identification

- To Low Count Down Trigger

- Low energy proton Trigger

- Proton

- Helium

- Muon

(Charts showing particle identification based on dE/dx in upper and lower TOF against Rigidity (GV).)
Selection cuts

After selecting single track events, further selection cuts were applied for particle identification.

\[1.0 \leq \left(\frac{dE}{dx} \right) < 4.0 \]

in upper TOF \textit{ (proton component) }

\[4.0 \leq \left(\frac{dE}{dx} \right) < 14.0 \]

in upper TOF \textit{ (helium component) }

\[R > 0.3 \]

for all components

\[0.6 \leq m^2 \leq 1.6 \]

(proton component)

\[1.6 \leq m^2 \]

(helium component)

\[m^2 = R^2 \left(\frac{1}{\beta^2} - 1 \right) \]

determined from velocity and rigidity measurements
Particle identification…
Flux Estimation

For a given trigger, Flux at the detector location

\[F_{\text{det}} = \frac{N \cdot C_d}{S\Omega \cdot T_{\text{live}} \cdot \Delta E \cdot \varepsilon_{\text{tr}} \cdot \varepsilon_{\text{nuc}} \cdot \varepsilon_{\text{dat}}} \]

- \(N \) Number of observed events
- \(C_d \) Count down rate for trigger (60(T4), 2(T15))
- \(S\Omega \) Geometrical acceptance (0.18 \(m^2 \) Sr)
- \(T_{\text{live}} \) Live time of data collection (0.87 \(\times \) \(T \))
- \(\Delta E \) Kinetic energy range in the bin (0.82 GeV/n)
- \(\varepsilon_{\text{tr}} \) Efficiency of trigger(1(T4), 0.144 \(\pm \) 0.021(T15))
- \(\varepsilon_{\text{nuc}} \) Efficiency of nuclear interaction in detector (0.8)
- \(\varepsilon_{\text{dat}} \) Efficiency of data selection cuts (0.9)
Helium flux

K.E = 0.18 - 1 GeV/n

Helium Flux (m⁻¹g⁻¹sr⁻¹(GeV/nucleon)⁻¹)

Atmospheric depth (gm cm⁻²)
Proton, Helium measurement in BESS-95 experiment

Cosmic-ray spectra near the LISA orbit

C Grimani et.al., Class. Quantum Grav. 21(2004) S629 – S633
These are very preliminary results.

Corrections Needed for:
- Interactions in the detector
- Interactions of primary in the small atmosphere above
- Secondary helium production in the atmosphere
BESS-2001 measurements

CAPRICE-98 measurements

- Atmospheric shower simulations are necessary for neutrino background estimations.
- Air shower simulations are compared with observed muon spectra in the atmosphere.
- \(P, He \) spectra can be used for fine tuning the models.
- Very few direct measurements in the past.
- BESS can provide information at few GeV energies.

E. Mocchiutti et al., 28th ICRC proc.
Conclusions

• BESS 1999 flight gave a good sample of proton and helium events at various atmospheric depths.

• Preliminary results from He data (<1 GeV/n) are encouraging.

• A very large sample of proton data in the whole atmospheric depth is separated.

• Accurate estimation of \(p, \)He flux and background estimations will be done in the coming months.
Time Of Flight system

- 10 plastic scintillators in upper layer, 12 in lower layer
- Each scint. $950 \times 100 \times 20$ mm
- Bicron BC-404, $n = 1.56$
- One 2.5 inch PMT per scintillator, connected with a light guide.
- Magnetic field at PMT location was 0.2 T
- Beam tests with 1 – 4 GeV/c proton, pion beams at KEK, Japan.
- From the test, timing resolution of each scintillator was found to be 50ps over entire length.
Cherenkov counter

- Sensitive area: 0.6\(m^2\)
- Silica aerogel radiator blocks, \(n = 1.032\)
- Thickness of block 8 cm
- Blocks in diffusion box, viewed by 46 PMT’s fixed to the side. (2.5 inch PMT).
- For cosmic muons in 2 – 10 GeV/c, 11.5 mean photoelectrons reaching PMT.
- Distribution obtained by summing up all 46 ADC’s for proton and muon is shown here. (muons 2-10 GeV/c, protons 1.5 to 2.5 GeV/c from balloon flight).
- For ADC combined threshold at 20 counts, muon rejection factor was \(1.7 \times 10^4\) while keeping proton detection efficiency at 99%.

Y. Shikaze et.al., NIM A 455 (2000) 596-606
The JET chamber

- A cylindrical chamber inside magnet. 0.85m diameter, 1.34m in length
- 1T uniform, axial magnetic field
- Ar + CO2 Gas Mixture
- Subdivided into 4 sections along length by 3 cathode planes, with wire separation 6.7mm.
- At the center of each of the four sections, there is a signal wire plane.
- Signal plane has sense wires equally spaced at 13.4mm intervals alternated with potential wires in staggered arrangement.
- 2 central sections have 52 sense wires, left and right section 32 wires.
- Maximum drift distance in one section is 95mm

- Particle trajectory in \((r, \Phi)\) plane by drift time measurement.
- Trajectory in Z-direction by charge division readout
- Spatial resolution of chamber is 175mm (X,Y plane), 2.0cm (Z).
- Max.detectable Rigidity = 200 GV
Inner Drift Chamber

- IDC is a cell type, arc shaped drift chamber inside magnet
- 1.06m long, at radii 384mm, 420mm
- $Ar + CO_2$ gas mixture
- Divided into 2 layers in radial
- In each layer, sense and field wires are alternately arranged.
- Hit position in (r, Φ) plane is determined by measuring drift time.
- Hit position along Z-direction is determined using the signal induced on two vernier pads above and below the sense wires.
- Absolute Z-position of hit can be estimated with a precision of 350 microns.
- (A coarse estimate of Z-location of hit is given by JET-chamber).
- Spatial resolution is $220\, \mu m$ in (r, Φ)

![Diagram of Inner Drift Chamber](image)
BESS Trigger Scheme

T0 Trigger

Based on certain number of MIPs in the upper and lower TOF scintillators hit by the charged particle.

4 bits

TT Trigger

IDC hit pattern selection.

(By comparing the observed IDC cell hit patterns with the stored hit patterns simulated for various types of events (particles...))

IDC rigidity selection

By making an on-line estimate of deflection using a look-up table of IDC cells hit.

8 bits

Master Trigger (T1)

Count Down (prescale) Circuit.

(Unbiased Events)

Logic Circuit generating "Biased" events.

Using information from Cerenkov Detector and other signals.

12 bit output

T0 Low Count Down trigger

Low energy proton trigger