

Radiation Tolerant Tracking Detectors for the sLHC

Mara Bruzzi Florence University, INFN and SCIPP

Outline of the talk

- Motivations
- Radiation damage in FZ Si high resistivity detectors
- Defect engineering of silicon
- P-type detectors
- The SMART Italian project for the upgrade of superLHC
- Results on MCz Si n- and p-type
- Future trends

Large Scale Application of Si Detectors in LHC

Present working conditions:

 $L \sim 10^{34} \text{ cm}^{-2} \text{s}^{-1}$ in 10 years of LHC operation:

 $\Rightarrow \qquad \varphi \sim 10^{15} \text{ n/cm}^2 \text{ for pixels}$ $\varphi \sim 10^{14} \text{ n/cm}^2 \text{ for microstrips}$

LHC upgrade ("Super-LHC" ... later than 2010)

 $L \sim 10^{35} \text{ cm}^{-2} \text{s}^{-1}$ \implies fluence up to 10^{16} cm^{-2} after five years

R&D needed for the development of a detector technology able to operate safely and efficiently in such an environment.

Anticipated Radiation Environment for Super LHC

Hadron fluence and radiation dose in different radial layers of the CMS tracker for an integrated luminosity of 2500fb⁻¹. (CERN-TH/2002-078)

Radius [cm]	Fluence of fast hadrons [cm ⁻²]	Dose [KGy]	
4	1.6x10 ¹⁶	4200	
11	2.3x10 ¹⁵	940	
22	8.0x10 ¹⁴	350	
75	1.5×10^{14}	35	
115	$1.0 x 10^{14}$	9.3	

The tracker volume can be splitted into 3 radial regions:

1.	R > 60cm	improved Si strip technology	
2.	20cm < R < 60cm	improved hybrid pixel technolog	gy
3.	R < 20cm	new approaches required —	3D detectors

The RD50 CERN Collaboration Development of Radiation Hard Semiconductor Devices for High Luminosity Colliders

- Collaboration formed in November 2001 http://www.cern.ch/rd50
- Experiment approved as RD50 by CERN in June 2002
- Main objective:

Development of ultra-radiation hard semiconductor detectors for the luminosity upgrade of the LHC to 10³⁵ cm⁻²s⁻¹ ("Super-LHC").

RD50 web-site: http://www.cern.ch/rd50

Scientific Organization of RD50

Development of Radiation Hard Semiconductor Devices for High Luminosity Colliders

Selecting radiation- hard tracker detectors for SuperLHC

Radiation Induced Microscopic Damage in Silicon

Influence of defects on the material and device properties

Vacancy amount and distribution depends on particle kind and energy

Mara Bruzzi, SCIPP Seminar Oct 11 2005

x (µm)

x (µm)

 $x (\mu m)$

[Mika Huhtinen NIMA 491(2002) 194]

Primary Damage and secondary defect formation

• Two basic defects

Main Defects in Irradiated Silicon

	Defect	Trap parameters			Annealing parameters		
	Identity	method	$E_t [eV]$	$\sigma_{n,p}[cm^2]$	E _{ann.} [eV]	T °C ann.	
	V-O _i	DLTS	$E_{c} - 0.17$	1.0×10^{-14}	2.1	350	
	$C_i C_s$	DLTS	$E_v + 0.17$			225	
			E_{v} +0.17	1.4×10^{-14}	1.7	250	
	V_2^+	EPR	$E_v + 0.25$	16	1.2	300	
	=		$E_v + 0.21$	$2x10^{-10}$	1.5		
	V_2	DLTS	$E_{c} - 0.25$	$4 \times 10^{-16} \text{ e}^{-0.01//\text{KI}}$	1.0	200	
		TSC	E 0.22	2 10 ⁻¹⁶	1.3	300	
	C	DITS	$E_{c} = 0.23$	2x10			
	\mathbf{C}_1	DLIS	$E_v + 0.3$ E + 0.33	9×10^{-14}	0.74	50	
			L_V , 0.55	7710	0.74	50	
	C iOi	EPR					
		PL				400	
		DLTS	$E_{v}+0.38$	2.5×10^{-15}			
		ТСТ	$E_v + 0.36$	1.2×10^{-15}			
	V_2	EPR	$E_{c} - 0.4$				
		PL	$E_{c} - 0.4$	a 10 ⁻¹⁵	1.3	300	
	D.U.	DLTS	E _c -0.41	2x10 13			
	P-V	EPK			0 0 4 1 2	150	
			$E_{c} = 0.4$ F = 0.46	3 7×10^{-15}	0.94-1.2	150	
ŀ	g :		$E_{c} = 0.40$	6.6×10^{-16}			
ŀ	S1 _i No		E = 0.49	4×10^{-15}			
	assessed	ТСТ	$E_c = 0.40$	ΤΛΙΟ			
	identity		$E_{v}+0.48$	5.5×10^{15}			
		DLTS/	$E_v + 0.51$	1×10^{-14}			
۲ ۱		ТСТ					
			:				

Leakage Current

- α independent of Φ_{eq} and impurities
 - used for fluence calibration (NIEL-Hypothesis)

 Same curve after proton and neutron irradiation

Depletion Voltage and Effective Space Charge Concentration

Charge Collection Efficiency

Limited by:

Partial depletion Trapping at deep levels Type inversion (SCSI)

Main limitation at high fluence due to electron and hole trapping

Trapping times measured with Transient Current Technique (TCT) within RD50 with different n-type Si materials.

Group	β _e	β_h	particle	$\max \Phi_{eq}$	Т	
	[10-16	cm^2ns^{-1}]	/ energy	[cm- ²]	[C]	
Ljubljana	4.1	6	reactor n	1017	-10	
	5.7	7.7	π		-10	
	5.6	7.7	24 GeV/c p		-10	
Hamburg	4.7	5.7	24 GeV/c p	$6 \cdot 10^{14}$	+20	
Dortmund	5.1	5	24 GeV/c p	1015	0	

 $1/\tau_{e,h} = \beta_{e,h} \cdot \Phi_{eq} [cm^{-2}]$

extrapolation to the high fluences :

 $\rightarrow \tau_t \sim 1/\Phi \tau_t \sim 0.2 \text{ ns for } \Phi = 10^{16} \text{ cm}^{-2}$

Defect Engineering of Silicon

Influence the defect kinetics by incorporation of impurities or defects: <u>Oxygen</u>

Initial idea: Incorporate Oxygen to getter radiation-induced vacancies \Rightarrow prevent formation of Di-vacancy (V₂) related deep acceptor levels

G. Lindstroem et al. ROSE Coll. NIM A 466 (2001) 308-326

Discrepancy between CCE and CV analysis observed in diodes and microstrip detectors, ATLAS and CMS, DOFZ and Standard FZ

The beneficial effect of oxygen in proton irradiated silicon microstrip almost disappear in CCE measurements

Deterioration of the charge collection efficiency

Different kind of oxygen enriched Si materials investigated by RD50

Material	Symbol	ρΩcm	[O _i] cm ⁻³
Standard n-and ptype FZ	STNFZ	$1-7 \cdot 10^{3}$	< 5 10 ¹⁶
Diffusion Oxygenated FZ p and atype	DOFZ	$1-7 \cdot 10^{3}$	~ 1-2 10 ¹⁷
Epi-layer 50 μm on CZ n-type ITME	EPI	50-100	substrate: 1 · 10 ¹⁸
Czochralski Sumitomo, Japan n-type	CZ	$1.2 \cdot 10^{3}$	~ 8-9 10 ¹⁷
Magnetic Czochralski Okmetic Finland n-type and p-type	MCZ	$1.2 \cdot 10^{3}$	~ 5-9 10 ¹⁷

Czochralski Si

- Very high Oxygen content 10¹⁷-10¹⁸cm⁻³ (Grown in SiO₂ crucible)
- High resistivity (>1KΩcm) available only recently (MCZ & CZ technology) CZ wafers cheaper than FZ
- Starting with a p-type substrate offers the advantages of single-sided processing while keeping n⁺-side read-out

Czochralski Si

190 MeV π irradiation Villigen MCZ Okmetic after 24GeV/c p and neutron irradiation Cz from Sumitomo Sitix, Japan **1** 3 190 MeV pions $-\Delta - MCZ(b=0.017)$ 600 Cz-TD generated Vdep [V] (300 µm) "CERN scenario" neutron Cz-TD killed +SC Neff (1/cm3) 0 -SC MCZ proton FZ(b=0.022) 400 (E12) neutron -2 -3 MCZ(b=0.0045)**MCZ** neutron 200-4 proton -5 Space charge sign ♦ standard FZ (CiS) inversion (SCSI) △ DOFZ 24 h/1150°C (CiS) -6 $2^{-10^{14}}$ 4.10^{14} $8^{\cdot}10^{14}$ 6.10^{14} 10^{15} 0 10 2030 40500 Φ_{π} [cm⁻²] [G.Lindstroem et al. 1 MeV equivalent n- Fluence (1E13 n/cm2) Data From G.Lindstrom et al. Data From Z. Li et al. IEEE TNS

No or delayed Space Charge Sign Inversion

Leakage current and charge trapping comparable to FZ silicon

MCZ n-type Si microstrip detectors - Helsinki

A MCZ microstrip detector prototype (AC coupled, with 1024 strips, 6 cm long, w=10 μ m, p=50 μ m) has been tested by 225 GeV muon beam at CERN with AV1 chips

First test beam with a full-size czochralski microstrip detector equipped with LHC speed electronics (SCTA) at CERN by the Glasgow group with a MCZ Si detector produced by Helsinki.

Unirradiated sensor S/N > 23:1 significant CCE after irradiation levels of up to $7x10^{14}$ 24 GeV p/cm².

C. Parkes NIM A, 2005

Early 2004: n-in-p microstrip detectors

Liverpool & CNM-Barcelona within RD50 Data presented by G. Casse at Vienna Conference, February 2004

☐ Miniature n-in-p microstrip detectors (280µm thick) produced by CNM-Barcelona using a mask-set designed by the University of Liverpool.

Detectors read-out with a SCT128A LHC speed (40MHz) chip

□ Material: standard p-type and oxygenated (DOFZ) p-type

□ Irradiation: 24GeV protons up to 3 10¹⁵ p cm⁻² (standard) and 7.5 10¹⁵ p cm⁻² (oxygenated) CCE ~ 60% after 3 10¹⁵ p cm⁻² at 900V(standard p-type)

CCE ~ 30% after 7.5 10¹⁵ p cm⁻² 900V (oxygenated p-type)

At the highest fluence Q~6500e at V_{bias} =900V. Corresponds to: ccd~90µm, trapping times 2.4 x larger than previously measured.

Collected Charge in P-type material: trapping underestimated by previous measurements

Recent n-in-p Results

"Radiation hardness of high resistivity n- and p-type magnetic Czochralski silicon" for the studies on the pre- and post-irradiated materials performed on the diodes of these production runs.

MCz Samples

p-on-n MCz <100>, ρ >500 Ω cm

✓ Standard: LTO, sintering @ 420C

✓ no LTO, sintering @ 380C

✓ no LTO, sintering @ 350C

 \checkmark no LTO, sintering @ 380C + TDK

Fz Samples

p-on-n Fz <111>, ρ >6K Ω cm

- ✓ Standard Process
- ✓ sintering @ 380C

n-on-p MCz <100>, ρ >1.8 K Ω cm

✓No over-glass passivation

✓ Low dose p-spray (3.0E12 cm⁻²)

✓ High dose p-spray(5.0E12 cm⁻²)

n-on-p **Fz**, 200 μ m, ρ >5K Ω cm \checkmark Low dose p-spray (3.0E12 cm⁻²) \checkmark High dose p-spray(5.0E12 cm⁻²)

RUN I p-on-n

RUN II n-on-p

Pre-irradiation Characterization

 \checkmark Good performances of the n-type detectors in \checkmark Problems for the p-type detectors: terms of breakdown voltages and uniformity

 \diamond low breakdown voltages for the 100 μ m pitch detectors, probably due to the present implementation of the p-spray technique

Disuniformity of the wafer resistivity, explained with a different oxygen concentration leading to a spread in the thermal donor activation.

Map of the diodes Vdepl in a p-type MCz wafer

Measured in IRST

Electric field distribution in n-type MCz Si Detectors SMART, Italy, measured at loffe on July 4-5, 2005

For very high fluences (of the order of 10^{14} n/cm²) a depletion region can be observed on both sides of the device for STFZ p⁺/n: this is still true for MCz Si n-type irradiated with neutons, not for those irradiated with protons

24 GeV protons, F = 2e15 cm-2, CERN

M. Scaringella et al. presented at Large Scale Applications and Radiation Hardness Florence, Oct. 2005

Possible microscopic explanation of the delayed SCSI or suppressed space charge sign inversion 1. EVIDENCE OF RADIATION INDUCED SHALLOW DONOR IN MCz

30 K peak (PF shift observed on peak at 30K, evidencing it is donor-like nature)

N type MCz Sample: no LTO, sintering at 380°C 24GeV/c p up to 4x10¹⁴p/cm² Annealing: 1260min at 60°C Full depletion at 93 V

Mara Bruzzi, SCIPP Seminar Oct 11 2005

M. Bruzzi et al. Nucl. Instr. and Meth. A, in press

2. Evidence of VO complex increase in MCz n-type (related to a decreased concentration of V_2 related defects at midgap

•VO concentration is at least 3 times higher in MCz than in STFZ

•SD concentration is at least 5 times higher in MCz than in STFZ Mara Bruzzi, SCIPP Seminar Oct 11 2005

Comparison p- and n-type MCZ after irradiation

n-on-p IRST p-spray dose of 5×10^{12} cm⁻² 24GeV/c p up to 4×10^{14} p/cm² annealing of 180min at 80°C Full depletion voltage 337V.

The same shallow donor is obseved in p-type and n-type MCz Si

Bruzzi et al., Trento rd50 Workshop, Feb, 2004

Further developments: 3D detectors

First proposed by Sherwood Parker

- Electrodes:
 - narrow columns along detector thickness-"3D"
 - diameter: 10μm distance: 50 100μm
- Lateral depletion:
 - lower depletion voltage needed
 - thicker detectors possible
 - fast signal
- Hole processing :
 - Dry etching, Laser drilling, Photo Electro Chemical
 - Present aspect ratio (RD50) 13:1, Target: 30:1
- Electrode material
 - Doped Polysilicon

3D hexagonal geometry connected in strip and pixel configurations

G. Dalla Betta, SCIPP talk, Sept. 2005

Mara Bruzzi, SCIPP Seminar Oct 11 2005

SEM and photos by Glasgow group

Conclusions

- Radiation hard materials for tracker detectors at SuperLHC are under study by the CERN RD50 collaboration. Fluence range to be covered with optimised S/N is in the range 10¹⁵-10¹⁶cm⁻². At fluences up to 10¹⁵cm⁻² (Outer layers of a SLHC detector) the change of the depletion voltage and the large area to be covered by detectors is the major problem. CZ detectors could be a cost-effective radiation hard solution. High resistivity MCz n-type and p-type FZ &MCz Si are most promising materials.
- Miniature microstrip and pixel detectors made with defect engineered Si nand p-type have been fabricated by RD50 and are now under study.
- Quite encouragingly, <u>at higher fluences results seems better than first</u> <u>estrapolation made using parameters estimated at lower fluence</u>:
- □ higher trapping times (p-FZ, p-DOFZ, first n-MCz SMART)
- □ delayed reverse annealing (MCz SMART)
- □ sublinear growth of the V_{dep} with fluence (p- MCz&FZ)
- delayed/supressed type inversion (p-MCZ&FZ, MCz n- protons)