X-ray and Optical Flux Ratio Anomalies in Quadruply Lensed Quasars:Zooming in on Quasar Emission Regions

> David Pooley (UC Berkeley) Jeffrey Blackburne (MIT) Saul Rappaport (MIT) Paul Schechter (MIT)

ApJ, in press, astro-ph/0607655

UC Santa Cruz 2007 Feb 14

 $L \sim 10^{45} \text{ erg s}^{-1}$ Black hole ~ $10^{8-9} M_{\odot}$ Optical $2 \times 10^{15} \text{ cm}$ $\approx 100 \text{ Rg}$ 10^{14} cm X-ray $\approx 0.1 \,\mu \text{arcsec}$ $\xrightarrow{} 85 \text{ Rg}$ ≈ 5 narcsec $T(r) = egin{bmatrix} 3GM_{
m BH}\dot{M} \ - 8\pi\sigma r^3 \end{bmatrix}^{1/4} egin{pmatrix} 1 - \sqrt{r_0/r} \end{pmatrix}^{1/4}$

Singular Isothermal Sphere: $ho(r) = rac{\sigma_v^2}{2\pi G} rac{1}{r^2}$

courtesy Josiah Schwab

courtesy Josiah Schwab

Flux Ratio Anomalies: What are they?

RX J1131-1231

Blackburne, DP, & Rappaport 2006

 $F_A/F_B = 1.10 \pm 0.16$ $F_A/F_B = 1.7$

Flux Ratio Anomalies: What are they?

RX J1131-1231

Blackburne, DP, & Rappaport 2006

 $F_A/F_B = 1.10 \pm 0.16$ $F_A/F_B = 1.7$ $F_A/F_B = 0.10 \pm 0.01$

Similar discrepancies in RX J0911+0551 Morgan et al. 2001 and PG 1115+080 DP et al. 2006

Flux Ratio Anomalies: What causes them?

- ◆ Smooth lens models cannot account for them
 ◆ Microlensing by stars (~1 M_☉) e.g., Witt, Mao, & Schecter 1995
 ◆ Millilensing by dark matter clumps (~10⁴-10⁶ M_☉) Mao & Schneider 1998, Metcalf & Madau 2001, Chiba 2002, Dalal & Kochaneck 2002
- Einstein radius of perturber in typical lensing galaxy: ~ $3 \sqrt{(m/M_{\odot})} (Gpc/D_L) \mu$ -arcsec
- ✦ If millilensing, X-ray and optical should be affected the same
- ♦ Differences in X-ray and optical ⇒ microlensing

Flux Ratio Anomalies: What are they?

RX J1131-1231

Blackburne, DP, & Rappaport 2006

 $F_A/F_B = 1.10 \pm 0.16$ $F_A/F_B = 1.7$ $F_A/F_B = 0.10 \pm 0.01$

Similar discrepancies in RX J0911+0551 Morgan et al. 2001 and PG 1115+080 DP et al. 2006

Microlensing

Microlensing

Microlensing

courtesy Svetlin Tassev

Flux Ratio Anomalies: How common are they?

- Systematic study of 10 quadruply lensed quasars
 - ✦ Re-analysed archival Chandra data
 - Optical fluxes from the literature (near IR band)
 - Simple lens models (SIS + external shear)
- Emphasis on high-magnification saddle point (HS)
 Should be most susceptible to microlensing

```
Schechter & Wambsganns 2002
```

- ✦ Compare it to high-magnification minimum (HM)
 - In many cases, should be about equal
- Compare it to low-magnification minimum (LM)
 - Should be least susceptible to microlensing

Kochanek & Dalal 2004

Q 2237+0305

B 1422+231

HE 0230-2130

High Magnification Minima

High Magnification Saddle Points

Flux Ratio Anomalies: How common are they?

HS = High magn. Saddle pointHM = High magn. MinimumLM = Low magn. Minimum

DP et al. 2006

Flux Ratio Anomalies: Optical vs. X-ray

Flux Ratio Anomalies: The effects of source size

Flux Ratio Anomalies: The effects of source shape

Conclusion:

Our optical anomalies are roughly half the amplitude of the X-ray anomalies \Rightarrow optical $R_{1/2} \gtrsim 1/3 R_{Ein}$

The Sizes of Quasar Emission Regions

We calculate the optical $R_{1/2}$ for Shakura-Sunyaev disks and compare to the microlens Einstein radii:

Quasar	$\frac{L_{\text{bol,opt}}^{a}}{(10^{45} \text{ erg s}^{-1})}$	$L_{bol,X}^{b}$ (10 ⁴⁵ erg s ⁻¹)	$\log M_{\rm BH}^{\rm c}$ (M_{\odot})	$r_{1/2}^{d}$ (10 ¹⁵ cm)	$r_{1/2}^{d}$ (R_g)	stellar $r_{\rm Ein}^{\rm e}$ (10 ¹⁵ cm)	$\log r_{1/2}/r_{\rm Ein}$
HE 0230-2130	2.9	6.3	7.95 ± 0.24	0.93	70	43	-1.66 ± 0.16
MG J0414+0534	36	28	9.04 ± 0.17	3.8	23	31	-0.91 ± 0.11
RX J0911+0551	13	13	8.60 ± 0.18	1.9	32	35	-1.26 ± 0.12
SDSS J0924+0219	0.6	0.3	7.27 ± 0.56	0.42	152	48	-2.06 ± 0.37
PG 1115+080	11	6.6	8.53 ± 0.37	2.5	50	55	-1.35 ± 0.25
RX J1131–1231	0.80	1.3	7.39 ± 0.19	0.84	230	38	-1.65 ± 0.13
H 1413+117	56	6.5	9.24 ± 0.51	5.4	•••		
B 1422+231	250	135	9.89 ± 0.18	13	11	47	-0.55 ± 0.12
WFI J2033–4723	5.7	3.8	8.24 ± 0.12	1.6	62	36	-1.35 ± 0.08
Q 2237+0305	32	2.7	8.99 ± 0.76	5.5	38	150	-1.43 ± 0.51

The Sizes of Quasar Emission Regions

We calculate the optical $R_{1/2}$ for Shakura-Sunyaev disks and compare to the microlens Einstein radii:

DP et al. 2006

The Sizes of Quasar Emission Regions

We calculate the optical $R_{1/2}$ for Shakura-Sunyaev disks and compare to the microlens Einstein radii:

DP et al. 2006

Summary & Outlook

- * Microlensing is the primary cause of the flux ratio anomalies
- ★ Optical emitting regions of these quasars have sizes $\gtrsim 1/3$ of a stellar Einstein radius, i.e., a few μ -arcsec, corresponding to ~10¹⁶⁻¹⁷ cm
- * Standard accretion disks are too small
- * Four new systems coming in *Chandra* Cycle 8
- * These same flux ratio anomalies can be used to determine the ratio of stellar matter to dark matter in the lens galaxy

Stellar/Smooth Matter Fraction

