BaBar SVT: Radiation Damage and Other Operational Issues

Gabriele Simi SLAC

1

Outline

- •Intro to BaBar and SVT
- Radiation Environment
- •Damage to Si Detectors
- •Damage to Front End Electronics
- •Performance Degradation
- •Other mysteries

SVT Requirements and Constraints

PEP-II Constraints

• Permanent dipole (B1) magnets at +/- 20

cm from IP.

- Polar angle restriction: $17.2^{\circ} < \vartheta < 150^{\circ}$.
- Must be clam-shelled into place after installation of B1 magnets
- Radiation exposure at innermost layer

(nominal background level assumed at time

of construction):

- Average: 33 kRad/year.
- In beam plane: 240 kRad/year.
- SVT was originally designed to function in up to 10 X nominal background.

Performance Requirements

- Δz resolution < 130 μ m.
- Single vertex resolution < 80µm.
- Stand-alone tracking for Pt<100MeV/c.

- Double sided n-bulk silcon sensors, $6-30 \text{ k}\Omega \text{ cm}$
- Custom front-end chips (honeywell 0.8 µm)
- Arch shaped outer layer modules to reduce L_{rad}
- Stand alone tracking for 70 MeV< pt < 120 MeV
- Angular acceptance limited by bending magnets

Geometry

- Inner 3 layers for angle and impact parameter resolution
- Outer 2 layers for pattern recognition and low p_t tracking

<u>Layer</u>	<u>Radius</u>
1	3.3 cm
2	4.0 cm
3	5.9 cm
4	9.1 to 12.7 cm
5	11.4 to 14.6 cm

SVT in Numbers

- 5 layers, double sided
 - Barrel design, L4 and L5 not cylindrical
 - 340 wafers, 6 different types
 - $-\sim 1 m^2$ of silicon area
- 104 Double-sided HDI
 - Outside tracking volume
 - Mounted on Carbon Fiber cones (on B1 magnets)
- 1200 Atom chips
- 140K readout channels
- 0.3 million micro bonds

A Simple Construction Process..

Performance

Radiation Environment

- Particles overbent by the B1permanent magnets near the IP
- Originates from beam-gas scattering along the ring

Radiation Monitoring

- 12 reverse-biased PIN diodes
 - 6 forward, 6 backward
 - Active area: 1cm x 1cm x
 300 μm
- MID plane dose budget:
 - 4 MRad by july 2005
- TOP/BOM budget
 - 4 MRad by 2009

Radiation Effects

- Damage to the silicon detectors
- Damage to the front end electronics
- Occupancy and performance degradataion
- Unexpected effects

Damage to the Silicon Detectors

- Details of the silicon wafers P-stop shorts creation
- Depletion voltage shift \bullet
- Lekage current increase
- Disuniform irradiation

- Leakage current in real SVT
- Radiation distribution
- Charge Collection Efficiency

Silicon Wafers

Manufactured at Micron 300 μ m thick n-bulk, 4-8 k Ω cm

AC coupling to strip implants. Polysilicon Bias resistors on wafer, $5 M\Omega$

Damage Mechanism

- Displacement of a *primary knock on atom* (E_{th}=25eV), creation of interstitial and vacancy
- Details of the damage can be very complicated but in the Non Ionizing Energy Loss hypothesis the damage is linearly proportional to the energy imparted in displacing coll
- The damage function D(E) relates different types of particles and energies
- $\frac{dE}{dx} = \phi D(E)$
- 1GeV e- are ~1/10 less effective than the reference 1 MeV neutrons

Depletion Voltage

- Si detectors with strips and test structures irradiated with 900MeV e⁻
- Depletion voltage shift extracted from diode structures

Effective Doping Concentration

•
$$N_{eff} = V_{depl} 2\epsilon_s/ed^2$$

• Inversion of type occurs around 2.5Mrad

Depletion Voltage and Reverse Leakage Current

- Accordance with NIEL scaling
 - Exponential donor removal
 - Linear acceptor creation
- Leakage current increase dominated by bulk generation 2µA/cm²/Mrad@23°C
- Strip isolation OK

Non-uniform Irradiation: Spatial Resolution

• Assumptions:

•
$$N_d = N_a$$

• bias voltage just enough to deplete uniformly doped region

• 1 = 1 cm d = 300 um

$$s = \frac{\delta}{2} = \frac{d}{2} tg \theta \qquad tg \theta = \frac{h}{\frac{l}{2}} = d\left(\frac{\sqrt{2}-1}{2}\right) \frac{2}{l} = 0.12 \qquad s = \frac{\delta}{2} = 9 \,\mu m \qquad \text{smaller than the resolution}$$

I-V Characteristic in Real SVT

Radial Distribution

• The average leakage Dose(Mrad) current increase measured on real SVT 1μ A/cm²/Mrad@ 23°C **10⁻¹** • Compute the dose assuming the above coefficient • 1/r² dependence 10 Radius(cm)

Instantaneus Damage to Detectors

Intense burst of radiation =>discharge of detector capacitor =>Vbias (40V) momentarily drops across the coupling capacitors -deposited charge needed $Q_{R} = (C_{D} + \frac{C_{N}C_{P}}{C_{N} + C_{D}}) V_{Bias} \simeq 2.6 \, nC / strip$ on a time scale $< t = R_{\text{Bias}} * C_{\text{det}} \sim 1 \text{ms}$

=> critical radiation: 1 Rad/1 ms

Damage Rate

- All the sensors have been tested for AC breakdown up to 20V during construction
- A later study on detectors with a pitch similar to the SVT inner layers has shown an expected rate of failures of about 1-2%
- The effect has been observed in the real system:
- 65 pin-holes /20k channels in L1,2

Trickle Injection

- Trickle injection => intense bursts of radiation associated to injected bunch => instantaneous damage ?
- We measured deposited charge in the detector after the injected pulse using the silicon sensors themselves: limit is 2600nC/HM/1ms

• =>3 orders of magnitude safety

Rad Damage to the Si: CCE

- Creation of traps in the bulk→ inefficiency in collecting charge
- Irradiation of detector with
 0.9 GeV e- at Elettra (Trieste)
- Fron-end chips not irradiated, needed for readout
- Spot size _y=1.44 mm to simulate non uniform radiation environment
- Peak dose: 10 MRad. in 6 steps

CCE: method

- Illuminate silicon sensor with penetrating LED λ =1060 nm, σ = 0.5 mm
- Determine "50% turn-on point" of threshold (T(i)) as a function of light intensity (Vled) for each channel i
- Fit for the slope of T(i) vs Vled, correct for measured gain, sum all channels: $\sum \frac{slope(i)}{gain(i)} = B * CCE$, B depends only on the LED

shape and disappears in the ratio

$$\frac{\sum slope^{after}}{\sum slope^{pre}} = \frac{CCE^{after}}{CCE^{pre}}$$

CCE: results

- Illuminate silicon sensor with penetrating LED λ =1060 nm, σ = 0.5 mm
- At 5.5 Mrad (after type inversion) the ratio is 94%±4%
 -> we start to see inefficiency

Damage to the Electronics

- AToM characteristics
- Noise increase and gain decrease
 - In ⁶⁰Co irradiation
 - In the real SVT
- Threshold Shift
 - Real SVT
 - Chip Irradiation

The AtoM chip

- AToM = A Time Over threshold Machine`
- Custom Si readout IC designed for BaBar by:LBNL,INFN-Pavia, UCSC

FEATURES

- •128 Channels per chip
- •Rad-Hard CMOS (Honeywell 0.8µm)
- •Simultaneous
 - Acquisition
 - Digitization
 - Readout
- •Sparsified readout
- •Time Over Threshold (TOT) readout
- •Internal charge injection

The AtoM chip

• Block diagram

⁶⁰Co Irradiation

- Controlled irradiation of Atom chips up to 5MRad in 2001 at SLAC and LBL
- Chips were powered and running during the irradiation
- No digital failures observed

• Noise =
$$\alpha + \beta * C_{load}$$

AToM degradation Observed in SVT

- Radiation estimated from the nearest pin diode
- 1-2 MRad depending on the module
- Analog parameters degradation on installed chips is consistend with ⁶⁰Co measurements
- New unespected effects seen on threshold offset

Noise prediction as a function of dose

Things we know we don't know

Is it a function of the radiation?

- The horizontal axis represents the peak dose but the radiation is not uniform across the chip channels
- Rescaling the dose using the radiation profile...

Threshold Shift in controlled irradiation

- To understand/reproduce the pedestal shift effect, FEE chips (one L1 HDI, one L2 spare HM) have been irradiated at Elettra synchrotron (1GeV e⁻) in Trieste
 - Dose rate between 1 and 10 krad/s at fluence peak
 - Doses up to 9 Mrad
- A pedestal shift of comparable magnitude as in the real SVT has been observed, but...
 - Gain doesn't drop as much as in SVT
 - Pedestal is not going back (beside annealing)
 - Dose scale is different
- Irradiation with a neutron source is also planned

AToM Irradiation Setup

- Rate of 10 Krad/s, integrated dose exceeding 6 Mrads on chip 0-1-2-3
- To study the effect of instantaneous rate, chip 4 has been irradiated at a lower rate

Module setup

Threshold change vs dose

Gain and Threshold change vs channel after 6 Mrad

First indications from analysis

- We can reproduce the threshold shift using 1 GeV electrons, but :
 - beside annealing there is no indication of pedestal going back to non irradiated levels
 - the dose scale is different
 - Gain doesn't show a significant change
- Any ideas on the generating mechanism?

Rotate or not rotate?

Reversible degradation

- The machine background radiation not only degrades the performance of the SVT detector in expected (and unexpeted) ways because of the integrated dose, but also the instantaneus rate has a significant impact
- The performace degrades with occupancy which in the inner layer is proportional to the background rate

Performance with high instantaneus background rate

•Look in data at hit efficiency and resolution as a function of occupancy in the FEE

Occupancy projections

Use parametrization fitted on background studies data to extrapolate to future running conditions

Summary

- SVT originally designed for 240krad/yr has now integrated 2.4Mrad in the worst case
- Extensive studies have been made to understand the effects of radiation damage
- Si: Leakage current increased x 10
- Electronics degradation: S/N=10 @ 5Mrad
- Unexpected effects reproducible, not understood
- Soft degradation after 5 Mrad

What if we Loose the Mid-plane?

