GLAST

Inverse Compton scattering on stellar photons (, heliospheric modulation, and neutrino

AMANDA

astrophysics)

IceCube

Amundsen-Scott station

Troy A. Porter

with Igor V. Moskalenko and Seth W. Digel Galactic: CR interactions in ISM (π° , brem) and with ISRF (IC) - interesting Extragalactic (EGRB): unresolved sources, true diffuse emission (DM?) - very interesting After extracting foregrounds can get at 'background'

Galactic: GalProp + other approaches

What about other 'celestial' sources?

- Inverse Compton scattering in Galaxy
- Study of 'local' heliosphere
 - Foreground for EGRB
 - Using GLAST as a solar modulation probe
 - Implications for other studies (gammas and neutrinos from Sun, etc.)
- Other stars
 - Electron spectrum in ISM?

GLAST LAT Project

Inverse Compton Scattering

λ μ_λ (μm eV cm³ μm⁻¹) 10 1

10-4

ΩP

ISRF

CMB

IR

Inverse Compton scattering

Close' to stars, local radiation field dominant

Star nearby called the 'Sun'

Solar photons stream outward from Sun - anisotropic

CR electrons distributed throughout heliosphere - isotropic

October 17th, 2006

Anisotropic ICS

\e

Intensity:

$$\frac{dF_{\gamma}}{d\epsilon_{2}} = \frac{1}{4} \int_{L} dx \, \frac{R_{\odot}^{2}}{r^{2}} \qquad \int d\gamma_{e} \frac{dJ_{e}(r, \gamma_{e})}{d\gamma_{e}} \\ \times \int d\epsilon_{1} \frac{dn_{bb}(\epsilon_{1}, T_{\odot})}{d\epsilon_{1}} \, \frac{dR(\gamma_{e}, \epsilon_{1})}{d\epsilon_{2}} \\ \mathbf{E}_{r}/\mathbf{m}_{e}\mathbf{c}^{2} = \mathbf{\varepsilon}_{2}, \ \mathbf{\varepsilon}_{r}/\mathbf{m}_{e}\mathbf{c}^{2} = \mathbf{\varepsilon}_{1}$$

Head-on collision: $E_v \sim \gamma_e^2 \varepsilon_v$

10 GeV Electrons ~ 100 MeV gammas

Target photons distributed radially outward from Sun: $\rho \sim n_{bb}(R_{Sun}/r)^2$ $T_{Sun} \sim 6000 \text{ K BB}$ Following collision: $E_{v} \sim (1/\gamma_{e})\gamma_{e}\varepsilon_{v} \sim \varepsilon_{v}$

Interplanetary B-field and Solar Wind

Troy A. Porter 7

October 17th, 2006

SCIPP Seminar

GLAST LAT Project Local Electron Spectrum and Heliospheric Modulation

The Ecliptic

Galactic plane

90

60

30

0

Averaged over one year, the ecliptic will be seen as a bright stripe on the sky, but the emission comes from all

Troy A. Porter 10

October 17th, 2006

Differential Spectrum

Spectrum < 1 GeV 10⁻² shows variation = 0.3° E² I₃(E₃) (MeV cm⁻² s⁻¹ sr⁻¹) -0 0 -2 -2 -2 -1) dependent on modulation level \Rightarrow Variations of γ -ray flux over solar cycle 45 **Φ**=0, 500, 1000 MV 180 10² 10³ **10**⁴ 10⁵ TABLE 1. ALL-SKY AVERAGE INTEGRAL FLUX 10 E_v (MeV) E1000 MV $\Phi_{0} = 0$ 500 MVEGRB from SMR2004 F_{rc} (>100MeV) < 6°~ 2 × 10⁻⁷ cm⁻² s⁻¹ >10 MeV5.63.42.4>100 MeV0.690.560.47>1 GeV0.050.040.04EGRET: F(>100MeV) UL = 2 × 10⁻⁷ NOTE. — Flux units 10^{-6} cm⁻² s⁻¹ sr⁻¹. **cm**⁻² **s**⁻¹

GLAST LAT Project

Why it is interesting

Simulated GLAST skymap >1 GeV

·GLAST will resolve 1000s of blazars, main contributors to the EGRB; thus solar IC becomes more important
·Studies of heliospheric modulation and monitoring of the heliosphere 0-10 AU
·Determination of the CR proton flux near the solar

- •albedo gammas $pp \rightarrow \pi^{\circ} \rightarrow 2\gamma$ F(>100 MeV) ~ 0.5×10⁻⁷ cm⁻² s⁻¹
 - ·CR cascade development

surface:

GLAST LAT Project

Solar Atmosphere and Interior

CR cascade development in the solar atmosphere depends on:

- the gas density profile
- underlying B-field structure

Neutrino flux is affected by absorption in the solar core

Troy A. Porter 13

October 17th, 2006

SCIPP Seminar

 F_v (>100 MeV) ~ (0.2-0.7)×10⁻⁷ cm⁻² s⁻¹

- ~20 v/yr (>100 GeV) in a km³ detector
- Seckel, Stanev, Gaisser 1991, ApJ 382, 652 (**y**,**v**)
- IM, Karakula, Tkatzyk 1991, A&A 248, L5 (v)
- IM, Karakula 1993, J.Phys.G 19, 1399 (v)
- Ingelman, Thunman 1996, PRD 54, 4385 (v)

Based on the expected sensitivity of the LAT:

- •A source with flux 10^{-7} cm⁻² s⁻¹ and the hardness of the solar IC emission will be detectable on a daily basis when the Sun is not close to the Galactic plane, where the diffuse emission is brightest
- -Sensitive variability studies of the bright core of the IC emission surrounding the Sun should be possible on weekly time scales
- •With exposure accumulated over several months, the Sun should be resolved as an extended source and potentially its IC and pion decay components separated spatially

Shameless advertising: astro-ph/0607521

What about other stars? Look at luminous stars since their radiation field is more extensive

θ/d

Troy A. Porter 16

October 17th, 2006

Spectrum and Flux

Source @ 100 pc:

Orlando & Strong astro-ph/0607563

Troy A. Porter 17

October 17th, 2006

SCIPP Seminar

Candidates for Detection

Single Stars: 70 most luminous from Hipparcos

OB associations:

e.g., Cygnus OB2 1700 pc ~100 O stars ~2500 B stars F_>100MeV within 1° ~ 4×10⁻⁹ cm⁻² s⁻¹

Conservative, could be higher if CR spectrum different

- On-going work
 - Trying methods on EGRET data but difficult ...
 - Good exercise for when GLAST is 'flying'
- Practical
 - Solar modulation
 - \cdot Using GLAST as a solar modulation probe is exciting
 - Multi-wavelength with other instruments
 - IC halos
- Theoretical
 - CR interactions in the Sun
 - Reduce uncertainty in flux at solar surface, feed in to CR cascade calculations
 - Π^{o} gammas + neutrinos
 - Neutrino detectors
- The future is (y-ray) bright for GLAST