
Physics/Astronomy 226, Problem set 4, Due 2/10
Solutions

Reading: Carroll, Ch. 3

1. Derive the explicit expression for the components of the commutator (a.k.a. Lie
bracket):

[X, Y ]u = Xλ∂λY
µ − Y λ∂λX

µ.

Solution:

Our vectors consist of components and basis vectors:

X = Xλ∂λ.

We begin by breaking the commutator [X, Y ] into components and acting it upon a
test function f .

([X, Y ]f)µ = (X[Y (f)])µ − (Y [X(f)])µ

= Xλ∂λY
µ∂µf − Y λ∂λX

µ∂µf

= (Xλ∂λY
µ − Y λ∂λX

µ)∂µf.

The in the third step, the ∂λ∂µf terms cancel. Removing the test function, we are left
with

([X, Y ]f)µ = (Xλ∂λY
µ − Y λ∂λX

µ)

2. Write down polar coordinates xi
′
= (r, θ) and cartesian coordinates xi = x, y in terms

of each other.

(a) Write the cartesian ∂i and dxi = (dx̂, dŷ) basis vectors in terms of the polar basis

vectors ∂i′ and 1-forms dxi
′
= (dr̂, dθ̂).

(b) Consider the tensor

T = y2dx̂⊗ dx̂+ dŷ ⊗ dŷ.

Write this tensor in terms of the polar 1-form basis. Do this first by using the
transformations of the 1-forms computed in part (a), then by explicitly trans-
forming the components of the tensor, and check that your results agree.

Solution:
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(a) Our transformations are

r =
√
x2 + y2

θ = arctan
y

x

The transformation law for a basis one-form is

dr =
∂r

∂x
dx+

∂r

∂y
dy

=
x√

x2 + y2
dx+

y√
x2 + y2

dy

Similarly, for θ we find

dθ =
dx

1 + ( y
x
)2

−y
x2

+
dy

1 + ( y
x
)2

1

x

=
−y

x2 + y2
dx+

x

x2 + y2
dy

Now for the basis vectors, we have the general transformation equation

∂

∂r
=
∂x

∂r

∂

∂x
+
∂y

∂r

∂

∂y
∂

∂θ
=
∂x

∂θ

∂

∂x
+
∂y

∂θ

∂

∂y
∂

∂r
= cos(arctan

y

x
)
∂

∂x
+ sin(arctan

y

x
)
∂

∂y
∂

∂θ
= −

√
x2 + y2 sin(arctan

y

x
)
∂

∂x
+
√
x2 + y2 cos(arctan

y

x
)
∂

∂y

(b)
T = y2dx̂⊗ dx̂+ dŷ ⊗ dŷ

The components are

Tµν =

(
y2 0
0 1

)
,

where as usual ν labels the columns and µ labels the rows. The transformation
can be done in two ways, first by direct substitution of the basis 1-forms, and
second by calculating and applying the transformation matrices. For the first
method we need the basis one-forms dx̂ and dŷ, which are simple enough to
compute.

dx̂ = cos θdr − r sin θdθ

dŷ = sin θdr + r cos θdθ

Now we plug it all in

T = r2 sin2 θ(cos2θ(dr̂ ⊗ dr̂)− r cos θ sin θ(dr̂ ⊗ dθ̂ + dθ̂dr̂) + r2 sin2 θ(dθ̂ ⊗ dθ̂))
+ (sin2 θ(dr̂ ⊗ dr̂)− r cos θ sin θ(dr̂ ⊗ dθ̂ + dθ̂dr̂) + r2 cos2 θ(dθ̂ ⊗ dθ̂))

2



The components are no longer so concise:

Tµ′ν′ =

(
r2 sin2 θ cos2 θ + sin2 θ −r3 sin3 θ cos θ + r sin θ cos θ

−r3 sin3 θ cos θ + r sin θ cos θ r4 sin4 θ + r2 cos2 θ

)
.

For the second method we want to use the transformation matrices

Tµ′ν′ = ∂µµ′∂
ν
ν′Tµν

Here ∂µµ′ ≡ ∂xµ

∂xµ′ Expanded as a matrix, this has the form

∂µµ′ =

(
∂x
∂r

∂x
∂θ

∂y
∂r

∂y
∂θ

)
=

(
cos θ −r sin θ
sin θ r cos θ

)
Note that to sum over the tensors indices using using standard matrix multipli-
cation, we want to multiply matrices of the form.

T ′ = ∂T
(
y2 0
0 1

)
∂

This will yield the same result as the previous method.

3. Although there is much beauty in considering spacetime as a single entity, it is some-
times useful to break it into space and time separately, and in particular to break the
metric gµν into (g00, g0i and gij). Two common ways to do this (1+3) splitting are as
follows. (Assume below that γij is the inverse of γij, and similar for the ’hat’ version.)

(a) In the first, we can write the metric as

ds2 = −M2(dt−Midx
i)2 + γijdx

idxj.

Show that in this case the metric components are given by

g00 = −M2; g0i = M2Mi; gij = γij −M2MiMj

g00 = −(M−2 −MiM
i); g0i = M i; gij = γij.

(b) In the second, we can write the metric as

ds2 = −N2dt2 + γ̂ij(dx
i +N idt)(dxj +N jdt).

Show that in this case,

g00 = −(N2 −N iNi); g0i = Ni; gij = γ̂ij

g00 = −N−2; g0i = N−2N i; gij = γ̂ij −N−2N iN j.
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(c) The first procedure is sometimes called ‘threading the spacetime’ and the second
is sometimes called ‘slicing the spacetime’. Comment on the appropriateness of
these terms.

Solution:

(a) The metric expands out to

ds2 = −M2[(dt)2 −Mi(dtdx
i + dxidt) +MiMjdx

idxj] + γijdx
idxj.

We can read off the matrix elements of g from this expression:

g00 = −M2

g0i = M2Mi

gij = γij −M2MiMj.

We can check that the components of the inverse matrix are correct:

g0ρgρ0 = g00g00 + g0igi0 = M2(M−2 −MiM
i) +M2MiM

i = 1

g0ρgρi = g00g0i + g0jgji = −M2Mi(M
−2 −MkM

k) +M j(γij −M2MiMj)

= −Mi +MiM
2MkM

k +Mi −MiM
2MjM

j = 0

giρgρ0 = gi0g00 + gijgj0 = −M iM2 +M2γijMj = −M iM2 +M iM2 = 0

giρgρj = gi0g0j + gikgkj = M2M iMj + γik(γkj −M2MjMk)

= M2M iMj −M2M iMj + γikγkj = δij,

where we used the fact that γ is the metric on the 3D leaves of this foliation of
spacetime (ie, γikγkj = δij and γijMj = M i). This proves that gµρgρν = δµν , so
the given inverse matrix elements are correct.

(b) Multiplying the line element out gives

ds2 = −N2dt2 + γ̂ijdx
idxj + γ̂ijN

idtdxj + γ̂ijN
jdxidt+ γ̂ijN

iN jdt2

= −(N2 −NiN
i)dt2 + 2Nidtdx

i + γ̂ijdx
idxj.

This implies that

g00 = −(N2 −NiN
i)

g0i = Ni

gij = γ̂ij.

Again, we will verify that the given inverse metric is correct, using the fact that
γ̂ is the metric on the leaves of the foliation:

g0ρgρ0 = g00g00 + g0igi0 = N−2(N2 −NiN
i) +NiN

−2N i = 1

g0ρgρi = g00g0i + g0jgji = −N−2Ni +N−2N j γ̂ji = 0

giρgρ0 = gi0g00 + gijgj0 = N−2N i(NkN
k −N2) +Nj(γ̂

ij −N−2N iN j)

= N i(N−2NkN
k − 1) +N i −N−2N iNjN

j = 0

giρgρj = gi0g0j + gikgkj = N−2N iNj + (γ̂ik −N−2N iNk)γ̂jk

= N−2N iNj −N−2N iNj + γ̂ikγ̂kj = δij.

This proves that the given inverse matrix elements are correct.
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(c) In the second procedure, when t is held constant the line element reduces to
γ̂ijdx

idxj. Spacetime is “sliced” into 3D spacelike submanifolds in this (3 + 1)
splitting.

In the first case, the line element reduces to γijdx
idxj when dt = Midx

i. This
expression defines a curve in spacetime at each point that “threads” through the
full 4D manifold, splitting it into (1 + 3) dimensions.

4. Each point inside the forward lightcone of the origin (i.e. −t2 + r2 < 0 in spherical
coordinates) in Minkowski space lies on some Lorentz hyperboloid of the form:

−t2 + r2 = −a2

for some value of a. Such points can be labeled using a as a time coordinate and
(χ, θ, φ) as spatial coordinates related to the Minkowski spherical coordiates by t =
a coshχ and r = a sinhχ. Find the metric of flat spacetime in these new coordinates.
Sketch a family of spacelike surfaces in a (t, r) spacetime diagram.

Solution:

There’s not actually that much to this problem: taking differentials of the given coor-
dinate transform gives:

dt = a sinhχdχ+ (coshχ)da, dr = a coshχdχ+ (sinhχda).

Plugging this into the metric for flat space in spherical coordinates:

ds2 = −dt2 + dr2 + r2dΩ2

gives
ds2 = −da2 + a2(dχ2 + sinh2 χdΩ2).

What’s fun about this problem, though is, that as we will see later in the course, a
spatial geometry

dσ2 = dχ2 + sinh2 χdΩ2

constitutes an infinite homogeneous space of constant (negative) curvature. Scaled by
a, the metric we have actually then corresponds to an infinite expanding universe. On
the other hand, if we look at a t = const. slice, the region we’ve described looks like
a finite-size sphere, which expands as t increases. As it turns out, our universe might
actually have just this structure, being infinite while sitting inside of a sort of bubble
expanding into the ambient spacetime.

5. A guy walks up to you on the street and wants to sell you a 3-dimensional space with
coordinates x, y, and z and metric

ds2 = dx2 + dy2 + dz2 −
(

3

13
dx+

4

13
dy +

12

13
dz

)2

.

Show that this guy is a hustler by demonstrating that this is really a 2-dimensional
space, and find two new coordinates Z and W for which the metric takes the form:

ds2 = dZ2 + dW 2,
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i.e. it’s just a plain old plane. (Hint: think about the volume element.)

Solution:

One way to see that this is 2-dimensional is to compute the 3-dimensional volume
element:

dV =
√
gdx dy dz.

working out the determinant we find
√
g = 0, meaning this is either 1 or 2-dimensional

in reality. Now, since the metric does not depend on, say, z, we can just throw this
coordinate away: we can experience the whole space while staying at constant z. The
remaining metric is then:

ds2 = dx2 + dy2 −
(

3

13
dx+

4

13
dy

)2

.

the determinant of this metric is nonzero, so the space really is 2D. To find the coor-
dinate transformation we need to diagonalize the metric, then rescale. we find:

ξ =
12

5

(
3

13
x+

4

13
y

)
,

η =
13

5

(
−4

13
x+

3

13
y

)
,

which gives
ds2 = dξ2 + dη2.

Note that this metric has nonzero determinant, showing that the original space was
two dimensional, not one dimensional.
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