
Physics/Astronomy 226, Problem set 1, Due 1/15
Reading: Carroll, Ch. 1

Solutions

1. Consider a Euclidean space with Cartesian coordinates xi, i.e. distances are given by
(∆s)2 = δij∆x

i∆xj.

(a) By Taylor expanding ∆xi
′
(∆xi), argue that the same formula will hold when

xi → xi
′

if and only if

xi
′
= Ai

′

ix
i +Bi′ , where δi′j′A

i′

iA
j′

j = δij, andAi
′

i, B
i′ are constant.

(b) An annoying friend argues to you: “The statement that space is Euclidean is
empty: given some distances, you will always be able to find some set of coor-
dinates xi such that (∆s)2 = δij∆x

i∆xj. Therefore any space could be called
Euclidean.” How do you prove your friend wrong? (Hint: consider N points with
coordinates xin, and the distances between them.)

Solution:

(a) This problem is a mess to write out but good practice in manipulating little indices.
One direction of the “if and only if” was essentially given in class: If

xi
′
= Ai

′

ix
i +Bi′ , where δi′j′A

i′

iA
j′

j = δij, andAi
′

i, B
i′ are constant,

then
∆xi

′
= Ai

′

i∆x
i.

Calculating δi′j′∆x
i′∆xj

′
, we find

δi′j′∆x
i′∆xj

′
= δi′j′A

i′

iA
j′

j∆x
i∆xj = δij∆x

i∆xj.

Now, for the other direction, first we can consider ∆xi
′

to be a function of ∆xi and
Taylor expand around ∆xi = 0:

∆xi
′
=
∂xi

′

∂xi
∆xi +

1

2

∂2xi
′

∂xj∂xk
∆xj∆xk + ...

Now if we assume that (∆s)2 = δij∆x
i∆xj = δi′j′∆x

i′∆xj
′
, we can plug in the Taylor

expansion to get the somewhat ghastly expression:

δi′j′∆x
i′∆xj

′
= δi′j′

[
∂xi

′

∂xi
∆xi +

1

2

∂2xi
′

∂xk∂xl
∆xk∆xl + ...

]
×
[
∂xj

′

∂xj
∆xj +

1

2

∂2xj
′

∂xm∂xn
∆xm∆xn + ...

]
= δi′j′

∂xi
′

∂xi
∂xj

′

∂xj
∆xi∆xj +

1

2
δi′j′

∂xi
′

∂xi
∂2xj

′

∂xm∂xn
∆xi∆xm∆xn + ...

This can only work for a general set of ∆xms if the second derivative terms such
as ∂2xj

′
/∂xm∂xn are zero. But this means that ∂xi

′
/∂xi are constant, so we can
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substitute the constant matrices Ai
′
i as above. By setting the terms in ∆xi∆xj equal

we recover the orthogonality condition, and of course we can add a constant Bi′ to
each term without affecting the ∆xi

′
at all. Thus the “only if” is proved.

(b) Let’s look at three dimensions. Consider N points with coordinates xin, n = 1..N .
We can give each point any coordinates we like, so there are 3N numbers we may
freely specify. But we can express the distance between any two points as (∆sab)

2 =
δij(x

i
a−xib)(xja−x

j
b), where a and b label any two points. These constitute N(N−1)/2

equations. If we consider the distances fixed, we have only 3N variables to play with
by changing variables, so we will not be able to find a solution if (you can readily
show) N > 7.

2. The discussion of particle dynamics in class was a bit abstract, so let’s do things a
bit more concretely. Imagine that you are in a spacecraft traveling in one particular
direction, call it the x-direction, and that you have an accelerometer on board. Imagine
some inertial frame (x, t) in which you are moving. At any time, you can also set up
an instantaneous rest frame (IRF) with coordinates (x′, t′), in which your acceleration
d2x′/dt′2 = dv′/dt′ is given by the reading F (τ) on your accelerometer, where τ is your
proper time and v = dx/dt. (Note: the IRF is defined as an inertial frame defined so
that at the relevant instant, the rocket is at rest in it, rather than a frame glued to
the rocket so that the rocket is always at rest in it.)

(a) Derive or write down the equations connecting u′ to u and du′/dt′ to du/dt, if
u = dx/dt is the velocity of some object, not necessarily the rocket (i.e. u is not
necessarily equal to v.)

(b) Find dv/dt and dv/dτ in terms of v and F (τ).

(c) Integrate this to find v(τ) = tanhψ(τ). What is ψ(τ)?

(d) Write down expressions for dt/dτ and dx/dτ in terms of ψ(τ).

(e) To look at this another way, write down the x− and t− components of the 4-
velocity fµ

′
in the rocket frame. Now transform these into the unprimed frame

to get an expression for d2t
dτ2 and d2x

dτ2 in terms of F . Confirm that your solution
solves these equations.

(f) Suppose F =const., and that at time t0 your rocket is at position x0. What are
x(τ) and t(τ)? Draw a spacetime diagram of your trajectory.

Solution:

(a) Let the rocket be moving in the +x direction, so v = dx/dt. From the usual
Lorentz transform, t′ = γ(t− vx) and x′ = γ(x− vt), so

dt′ = γ(dt− vdx) = γ(1− uv)dt, dx′ = γ(dx− vdt).

Therefore

u′ =
dx′

dt′
=

u− v
1− uv

.

Taking another differential,

du′ =
du

γ2(1− uv)2
,

2



so
du′

dt′
=

du/dt

γ3(1− uv)3
.

(b) Now we set u = v, so in the IRF (where dt′ = dτ), we have

dv′

dt′
=
dv′

dτ ′
= F (τ).

Using our formulas from part (a),

dv

dt
= (1− v2)3/2F (τ),

and
du

dτ
= (1− u2)F (τ).

(c) We find
v(τ) = tanhψ(τ),

where ψ(τ) =
∫ τ

0
F (τ ′)dτ ′ if v(τ = 0) = 0.

(d) Sticking these in to the formula for γ we find:

dt/dτ = γ = coshψ(τ)

and similarly
dx/dτ = vγ = sinhψ(τ).

(e) In the primed frame, we have as per the class discussion f 0′
= 0, fx

′
= F (τ).

Then
d2t

dτ 2
= f 0 = Λ0

0′f 0′
+ Λ0

1′f 1′
= vγF (τ),

d2x

dτ 2
= f 1 = Λ1

0′f 0′
+ Λ1

1′f 1′
= γF (τ).

If we take a τ derivative of our result of part (d), we get

d2t/dτ 2 =
d

dτ
coshψ = (sinhψ)F = γvF,

and

d2x/dτ 2 =
d

dτ
coshψ = (coshψ)F = γF,

so it all checks out.

(f) The equations integrate to:

t = t0 +
1

F
sinhFτ,

x = x0 +
1

F
(cosh fτ − 1)

This looks like a timelike hyperbola that asymptotes to the line t− t0 = x− x0.
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3. To continue with rocket science (which is, after all, easy compared to GR), a rocket
is flying at a 3-velocity ~v1 in inertial frame 1. Let Uµ

1 be the spacecraft’s 4-velocity in
that frame. Frame 1 is moving at velocity ~v12 with respect to frame 2, with ~v12 and
~v1 in the same direction.

(a) Express U0
1 in terms of |~v1|, and U i

1 in terms of ~v1.

(b) Write down the Lorentz transform between frame 1 and 2 both i) in terms of ~v12

and ii) in terms of the “rapidity parameter” φ, where |~v12| = tanhφ.

(c) Find the rocket 4-velocity Uµ
2 in frame 2, and use this to deduce the standard

expression for the addition of velocities (i.e. find the 3-velocity of the rocket in
frame 2). Write an analogous expression in terms of φ.

(d) Set |~v1| = |~v12| ≡ v. Let frame 2 move at velocity v with respect to frame 3 (in
the same direction as ~v12). Let frame 3 move at velocity v with respect to frame
4 (again in the same direction), etc. What is the 3-velocity of the rocket in frame
N? (Hint: write the Lorentz transform from frame 1 to frame 3 in terms of φ
and see what happens.).

Solution:

(a) Beginning with the equation of relativistic time dilation:

t = γτ =
τ√

1− v2
1

we find that . . . U0
1 =

∂t

∂τ
= γ =

1√
1− v2

1

And from the equation of length contraction:

xi1 = xiγ−1 = xi
√

1− v2
1

vi1 =
∂xi

∂t
=
∂xi

∂τ

∂τ

∂t
=
U i

1

U0
1

⇒ U i
1 = vi1U

0
1 =

v1√
1− v2

1

Note: this can also be done by knowing that the rocket has 4-velocity Uµ
0 =

(1, 0, 0, 0) in its rest frame, then applying to this a boost of velocity ~v1.

(b) First, chose the direction of motion of the rocket to be in the x-direction. Then,
beginning from the equations of length contraction and time dilation:

xi
′

= (xi + v τ) γ

t = (τ + xi v) γ

We may write the Lorentz transformation as . . .

⇒ Λ1
2 =


γ12 v12 γ12 0 0

v12 γ12 γ12 0 0
0 0 1 0
0 0 0 1


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where γ12 = (1− |~v12|2)−1/2.

If |~v12| = tanhφ then . . .

γ12 = (1− tanh2 φ)−
1
2 = coshφ

and since |~v12| γ = tanhφ · coshφ = sinhφ

⇒ Λ1
2 =


coshφ sinhφ 0 0
sinhφ coshφ 0 0

0 0 1 0
0 0 0 1


(c) Let v12 = |~v12|. Then

Uµ
2 = Λ1

2 U
µ
1 =


γ12 v12 γ12 0 0

v12 γ12 γ12 0 0
0 0 1 0
0 0 0 1




γ1

v1 γ1

0
0



=


γ1 γ12(1 + v1 v12)
γ1 γ12(v1 + v12)

0
0

 =


∂t
∂τ
∂x1

∂τ
∂x2

∂τ
∂x3

∂τ


so

v′ =
∂x1

∂t
=
∂x1

∂τ

∂τ

∂t

⇒ v′ =
γ1 γ12(v1 + v12)

γ1 γ12(1 + v1 v12)
=

v1 + v12

1 + v1 v12

or . . .

Uµ
2 = Λ1

2 U
µ
1 =


coshφ12 sinhφ12 0 0
sinhφ12 coshφ12 0 0

0 0 1 0
0 0 0 1




coshφ1

sinhφ1

0
0



=


coshφ1 coshφ12 + sinhφ1 sinhφ12

coshφ1 sinhφ12 + sinhφ1 coshφ12

0
0


⇒ v′ =

coshφ1 sinhφ12 + sinhφ1 coshφ12

coshφ1 coshφ12 + sinhφ1 sinhφ12

=
sinh(φ1 + φ12)

cosh(φ1 + φ12)
= tanh(φ1 + φ12)

(d) So, switching to the rapidity parameter φ, if |v1| = |v12| = v then φ1 =
φ12 = φ23 = φ
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thus

Λ1
3 =


cosh(φ+ φ) sinh(φ+ φ) 0 0
sinh(φ+ φ) cosh(φ+ φ) 0 0

0 0 1 0
0 0 0 1



⇒ Uµ
3 = Λ1

3U
µ
1 =


cosh 2φ sinh 2φ 0 0
sinh 2φ cosh 2φ 0 0

0 0 1 0
0 0 0 1




coshφ
sinhφ

0
0



=


cosh 2φ coshφ+ sinh 2φ sinhφ
sinh 2φ coshφ+ cosh 2φ sinhφ

0
0


⇒ v′3 = tanh(2φ+ φ) = tanh(3φ)

⇒ v′N = tanh(Nφ)

and since φ = tanh−1 v . . .
vN = tanh(N · tanh−1 v)
We can write this in terms of v by utilizing the trigonometric identity: tanh−1 x =
1
2

ln 1+x
1−x for x2 < 1

We see that

vN = tanh

(
ln

(
1 + v

1− v

)N
2

)

⇒ vN =
1− (1−v

1+v
)N

1 + (1−v
1+v

)N
.

Thus vN → 1 as N →∞.

4. Let T be a tensor with components T µν , and V be a vector with components V µ.

(a) Using the transformation rules for the tensor and vector components, prove that
the components of T µνV

ν transform as a vector.

(b) Write T and V in terms of components multiplying basis vectors ê(µ) and one-

forms θ̂(µ). Show that T (V ) is a map from one-forms to <, i.e. a vector.

Solution: (a) We know that

V µ′
= Λµ′

µV
µ and T µ

′

ν′ = Λµ′

µΛν
ν′T µν .

Then
T µ

′

ν′V
ν′

= Λµ′

µΛν
ν′T µνΛ

ν′

αV
α = δναΛµ′

µT
µ
νV

α = Λµ′

µT
µ
νV

ν ,

which is the vector transformation law. Note the introduction of the dummy index α
in the first equality, and the use of the fact that Λν

ν′ and Λν′
α are inverse matrixes in

the second equality.
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(b) This time,

V = V µêµ and T = T µν ê(µ) ⊗ θ̂(ν).

Then T acting on V gives

T µν ê(µ) ⊗ θ̂(ν)(V αê(α))

= T µν ê(µ) ⊗ V αθ̂(ν)(ê(α))

= T µνV
αê(µ) ⊗ δνα

= T µνV
ν ê(µ).

The first line holds because only the one-forms θ will act on the vector V . The second
line comes from the linearity of one forms. The third follows from the definition of the
tensor product and the choice of the natural basis one-forms θ. To get the last line
we can remove the tensor product because δνα is just a set of scalars, for which tensor
multiplication is just multiplication. The last line is manifestly a vector.

5. The Λ-particle is a neutral baryon of mass M = 1115 MeV which decays with a lifetime
of τ = 3× 10−10 s into a nucleon of mass m1 and a π-meson of mass m2.

It was first observed in flight by its charged decay mode Λ→ p+π− in cloud chambers.
The two charged tracks originate from a single points. The nucleon and pion identities
and momenta can be inferred from their ranges and curvature in the magnetic field of
the chamber.

(a) A Λ-particle is created with total energy 10 GeV in a collision in the top plate of a
cloud chamber. How far will it on average travel in the chamber before decaying?

(b) Derive a formula for the mass M of a decaying particle in terms of the masses
m1 and m2 and momenta p1 ≡ |~p2| and p2 ≡ |~p2| of the decay products and the
angle θ between the tracks in the laboratory frame.

Solution:

(a) From −m2 = pµp
µ We have

E2 = p2 +m2

where p = |pi| = γm~v, where v is the 3-velocity of the particle. Then, γv =
[(E/m)2 − 1]1/2, and t = γτ give

d = vt = [(E/m)2−1]1/2τ = [(10GeV/1115MeV )2−1]1/2×c×3×10−10s ' 80 cm.

(b) pµ = pµ1 + pµ2 , where 1,2 index the decay products. Then m2 = pµpµ gives

m2 = pµ1p1,µ + pµ2p2,µ + 2pµ1p2,µ (1)

= m2
1 +m2

2 + 2(E1E2 − ~p1 · ~p2)

= m2
1 +m2

2 + 2

(√
(m2

1 + p2
1)(m

2
2 + p2

2)− p1p2 cos θ

)
.
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6. Take a tensor Xµν and vector V µ with components (ν labels columns and µ labels
rows):

Xµν =


1 2 −2 1
−2 0 2 2
−1 1 1 0
−2 0 1 1

 , V µ = (1,−2, 0, 1) .

Let the metric be ηµν , and consider each of the following. For each valid tensor
equation, evaluate the l.h.s. For each invalid equation, state why it is invalid.

(a) Y = Xµ
µ

(b) Z = Xµµ

(c) V = V µVµ

(d) T ν = XµνVµ

(e) Qµν = Xµ
αX

αν +X(µν)

(f) Gµναβ = Xµν + VαXβδV
δ

(g) R[µν] = X [µν] − V [µV ν]

Solution:

(a) Y = ηµνX
µν , which is perfectly OK. To compute it, you know that you will only

get a contribution to the sum then µ = ν, so you can write it as:

Y = η00X
00 + η11X

11 + η22X
22 + η33X

33 = −1 + 0 + 1 + 1 = 1.

(b) This is not OK as we are contracting over two lower indices. In this case the result
will depend on the coordinate system (can you see why? the coordinate transforma-
tions will not form δµν when multiplied), whereas the l.h.s. will not.

(c) V = ηµνV
µV ν = −1 + 4 + 0 + 1 = 4.

(d) This is a valid equation but also a good reminder that we have to be careful in
converting to matrix notation in order to do the actual computation. First, we need
to lower the index of V , giving Vu = (−1,−2, 0, 1). Then, we must multiply in by our
matrix so that for each ν, we multiply Vu by the column of Xµν , i.e.

T 0 = −1× 1 +−2×−2 + 0×−1 + 1×−2 = 1.

We then end up with
T ν = (1,−2,−1,−4).

(e) This is also fine. If we write the first term as XµαηαβX
βν , it is straightforward

matrix multiplication XηX (considered as matrices). The second term is a sym-
metrization. We thus get:
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Qµν =


−5 −4 5 4
−4 6 0 4
−2 3 1 3
−1 5 −2 3

+


1 0 −1.5 −0.5
0 0 1.5 1
−1.5 1.5 1 0.5
−0.5 1 0.5 1

 =


−4 −4 3.5 3.5
−4 6 1.5 5
−3.5 4.5 2 3.5
−1.5 6 −1.5 4


(f) This is no good as it equates a (0 4) tensor to a (malformed) sum of (0 2) tensors.

(g) The second term vanishes because V µV ν is symmetric, but then we anti-symmetrize
over it. So we just have to anti-symmetrize Xµν to get:

R[µν] =
1

2
[Xµν −Xνµ] =

1

2


0 4 −1 3
−4 0 1 2
1 −1 0 −1
−3 −2 1 0

 .

Note that we don’t actually know what Rµν is.
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