
Physics/Astronomy 226, Problem set 2, Due 1/27
Solutions

1. (Repost from PS1) Take a tensor Xµν and vector V µ with components (ν labels
columns and µ labels rows):

Xµν =


1 2 −2 1
−2 0 2 2
−1 1 1 0
−2 0 1 1

 , V µ = (1,−2, 0, 1) .

Let the metric be ηµν , and consider each of the following. For each valid tensor
equation, evaluate the l.h.s. For each invalid equation, state why it is invalid.

(a) Y = Xµ
µ

(b) Z = Xµµ

(c) V = V µVµ

(d) T ν = XµνVµ

(e) Qµν = Xµ
αX

αν +X(µν)

(f) Gµναβ = Xµν + VαXβδV
δ

(g) R[µν] = X [µν] − V [µV ν]

Solution:

(a) Y = ηµνX
µν , which is perfectly OK. To compute it, you know that you will only

get a contribution to the sum then µ = ν, so you can write it as:

Y = η00X
00 + η11X

11 + η22X
22 + η33X

33 = −1 + 0 + 1 + 1 = 1.

(b) This is not OK as we are contracting over two lower indices. In this case the result
will depend on the coordinate system (can you see why? the coordinate transforma-
tions will not form δµν when multiplied), whereas the l.h.s. will not.

(c) V = ηµνV
µV ν = −1 + 4 + 0 + 1 = 4.

(d) This is a valid equation but also a good reminder that we have to be careful in
converting to matrix notation in order to do the actual computation. First, we need
to lower the index of V , giving Vu = (−1,−2, 0, 1). Then, we must multiply in by our
matrix so that for each ν, we multiply Vu by the column of Xµν , i.e.

T 0 = −1× 1 +−2×−2 + 0×−1 + 1×−2 = 1.

We then end up with
T ν = (1,−2,−1,−4).

(e) This is also fine. If we write the first term as XµαηαβX
βν , it is straightforward

matrix multiplication XηX (considered as matrices). The second term is a sym-
metrization. We thus get:
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Qµν =


−5 −4 5 4
−4 6 0 4
−2 3 1 3
−1 5 −2 3

+


1 0 −1.5 −0.5
0 0 1.5 1
−1.5 1.5 1 0.5
−0.5 1 0.5 1

 =


−4 −4 3.5 3.5
−4 6 1.5 5
−3.5 4.5 2 3.5
−1.5 6 −1.5 4


(f) This is no good as it equates a (0 4) tensor to a (malformed) sum of (0 2) tensors.

(g) The second term vanishes because V µV ν is symmetric, but then we anti-symmetrize
over it. So we just have to anti-symmetrize Xµν to get:

R[µν] =
1

2
[Xµν −Xνµ] =

1

2


0 4 −1 3
−4 0 1 2
1 −1 0 −1
−3 −2 1 0

 .

Note that we don’t actually know what Rµν is.

2. (a) Show that the equation
ε̃βαµν∂αFµν = 0

is equivalent to the Maxwell equations

∂iB
i = 0 and ε̃ijk∂jEk + ∂0B

i = 0.

(b) Show that it is also equivalent to the two alternative forms

∂[αFµν] = 0 or ∂αFµν + ∂µFνα + ∂νFαµ = 0.

Solution:

(a) We can have either β = 0 or β = i where i = 1, 2, 3. Beginning with β = 0, we
notice that ε̃0αµν = εijk, where i, j, k are spatial dimensions. The equation above
then simplifies to

ε̃ijk∂iFjk = ∂i(ε̃
ijkFjk) = 2∂iB

i = ∂iB
i = 0.

Now setting β = i, we have

ε̃iαµν∂αFµν = ε̃i0µν∂0Fµν − ε̃ijµν∂jFµν . (1)

On the first term on the RHS, we get contributions only from µ, ν = j, k (i.e.
spatial indices), so that

ε̃i0µν∂0Fµν = −ε̃0ijk∂0Fjk = −∂0(ε
ijkFjk) = −2∂0B

i.

In the second term on the RHS of Eq. 1, we must perform the analysis with µ and
ν set to zero in separate cases and add the resulting two terms, but since both
the Levi-Civita symbol and field-strength tensor are anti-symmetric, we can just
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calculate it in one case and multiply by two to get the final answer. Proceeding
with µ = 0,

ε̃ijµν∂jFµν → ε̃ij0k∂jF0k = ε̃ijk∂jF0k = ε̃ijk∂jEk.

Thus, combining these (and remembering the our original equation equals zero
so we can drop both the factors of two):

ε̃iαµν∂αFµν = ∂0B
i + ε̃ijk∂jEk = 0.

(b) First, we’ll show that the two equations listed above are the same:

∂[αFµν] =
1

6
(∂αFµν − ∂µFαν + ∂µFνα − ∂αFνµ + ∂νFαµ − ∂νFµα)

=
1

3
(∂αFµν + ∂µFνα + ∂νFαµ) = 0.

where we have exploited the anti-symmetric property of the field-strength tensor.
Obviously the factor of 1/3 is irrelevant since the whole thing is equal to zero.
With this done, we just have to show that one of these two equations equals the
equation given. This is easier to see with the more compact version. Since we
began with ε̃βαµν∂αFµν , the effect of the Levi-Civita symbol is to anti-symmetrize
the indices that it contracts with. Thus, another way to write this equation
showing the anti-symmetric relations of the α, µ, and ν indices without explicitly
showing the LC symbol is to simply write it as ∂[αFµν].

3. Calculate the nonzero components of the energy-momentum tensor T µν in cartesian
coordinates in an inertial frame in which there is a flat disk of radius r0 composed of
N particles of mass m, rotating counterclockwise in the x− y plane about some fixed
point, with fixed (radius-independent) angular velocity ω. Assume that the thickness
of the disk is � r0, and that N is large enough that one can treat the particles
as continuously distributed with fixed number density in the rest frame of the disk.
(Notes: (i) Don’t worry about what is keeping the particles rotating like this. (ii)
Nor should you worry about the effect of their mass on the spacetime – assume it is
Minkowski. (iii) Also, you can express your answer using phrases like “inside the disk”
and “outside the disk”. (iv) Assume that the particle number density n is uniform in
the rest frame of the disk. (v) Express you answer in Cartesian coordinates.)

Now suppose there is another such disk present with the same radius and center-of-
rotation but with angular velocity −ω, and that the particles do not collide or interact
in any way. What is T µν in this case?

Solution:

Assume the particles are dust-like, in which case the energy-momentum tensor is given
by

T µν = pµNν = mnUµUν

where m is the mass of each particle, n is the number density in the rest frame of the
particles, and Uµ is the four velocity vector field. Situate the disk so that it is centered
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at x=0, y=0 in the x-y plane. Since geometry is normal, the disk will have a particle
number density given by

n =
N

πr2
oa
,

if we let a be the thickness of the disk.

The four velocity of a particle is given by

Uµ =
∂χµ

∂τ
=
∂χµ

∂t

∂t

∂τ
.

We are restricted to the x-y plane, so U3 = dz
dτ

= 0. The time component, U0, is given
by γ, with the 3-velocity magnitude equal to ωr for a particle at radius r. The x and
y components, U1 and U2, are given by γ dx

dt
and γ dy

dt
, respectively.

Since this is circular motion, x and y can be parametrized as

x = r cos(ωt)

y = r sin(ωt)

which can be differentiated to yield the velocities

vx = −rω sin(ωt)

vy = rω cos(ωt).

Since Uµ is a velocity field, we need to rewrite the velocity components as a function
of position, not time. There is an inherent degeneracy in using sine and cosine alone,
so we will use the tangent and solve for t:

y

x
=

sin(ωt)

cos(ωt)
= tan(ωt)

⇒ t =
1

ω
arctan

(y
x

)
We can then rewrite the velocity equations as

vx = −rω sin(arctan
(y
x

)
)

vy = rω cos(arctan
(y
x

)
).

We can simplify this further by drawing a right triangle with sides x and y and hy-
potenuse r, and noticing that

θ = arctan
(y
x

)
sin θ = sin(arctan

(y
x

)
) =

y

r

cos θ = cos(arctan
(y
x

)
) =

x

r
.
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Thus, our velocities reduce to

vx = −ωy
vy = ωx

and our four velocity field is given by

Uµ = γ(1,−ωy, ωx, 0).

Multiplying out the energy-momentum tensor (T 00 = mnU0U0, T 01 = mnU0U1, etc.),
we arrive at

T µν =
mNγ2

πroa2


1 −ωy ωx 0
−ωy ω2y2 −ω2xy 0
ωx −ω2xy ω2x2 0
0 0 0 0


Now we add another disk, with the same number density n, same radius ro, and
opposite angular velocity −ω. The position and velocity of a particle for this ring will
be given by

x = r cos(−ωt) = r cos(ωt)

y = r sin(−ωt) = −r sin(ωt)

vx = −rω sin(ωt)

vy = −rω cos(ωt).

We can solve once again for the time:

y

x
= tan(−ωt)⇒ t = − 1

ω
arctan

(y
x

)
which makes the velocities become

vx = −rω sin(− arctan
(y
x

)
) = ωy

vy = −rω cos(− arctan
(y
x

)
) = −ωx.

(We could have obtained this trivially by changing ω to −ω, but it’s nice to see that
it works out.) The energy-momentum tensor for this ring is then given by

T µν =
mNγ2

πr2
oa


1 ωy −ωx 0
ωy ω2y2 −ω2xy 0
−ωx −ω2xy ω2x2 0

0 0 0 0

 .

The total energy-momentum tensor for the system is simply the sum of the energy-
momentum tensors for each ring:

T µν = T µν(ω) + T µν(−ω) =
2mNγ2

πr2
oa


1 0 0 0
0 ω2y2 −ω2xy 0
0 −ω2xy ω2x2 0
0 0 0 0

 .

Note that you can see that no energy is flowing anywhere, but that there is
(anisotropic) pressure and nonzero shear.
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