
Physics/Astronomy 226, Problem set 3, Due 2/3
Solutions

1. In class we wrote down a particle number 4-vector

Nµ
pp ≡

∑
n

∫
dτn δ

4(xα − xαn(τn))Uµ
n (τn) (1)

for a set of point particles with proper time τn, coordinates xαn(τn) and 4-velocity
Uµ
n (τn). This is the flux of particle number through a surface of constant xµ, so that

e.g. N0 is the number density.

(a) Show explicitly that ∂µN
µ
pp = 0. That is, act the partial derivative on the expres-

sion 1, then pull a bunch of δ−function trickery to show that it vanishes. Explain
your trickery clearly. (Hint: do the time integral first to get a δ3, then show that
the time and space parts of the sum cancel.)

(b) We similarly defined a particle energy-momentum tensor

T µνpp ≡
∑
n

∫
dτn δ

4(xα − xαn(τn))
pµn(τn)pνn(τn)

mn

, (2)

where mn is the mass of the nth particle. Using the same trickery show that

∂µT
µν
pp =

∑
n

∫
dτnδ

4(xα − xαn(τn))f νn(τn),

where fn is the 4-force on the nth particle.

Solution:

(a) First, let’s convert our nice covariant expression into a simpler but less covariant-
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looking one, as we did in class:

∂µN
µ
pp = ∂µ

∑
n

∫
dτn δ

4(xα − xαn(τn))Uµ
n (τn) (3)

= ∂µ
∑
n

∫
dτn δ(t− x0

n(τn))δ3(xi − xin(τn))
dxµn(τn)

dτn

= ∂µ
∑
n

∫
dτn
dt
dt δ(t− x0

n(τn))δ3(xi − xin(τn))
dxµn(τn)

dτn

= ∂µ
∑
n

∫
dt δ(t− x0

n(τn))δ3(xi − xin(τn))
dxµn(t(τn))

dt

= ∂µ
∑
n

δ3(xi − xin(t))
dxµn(t)

dt

= ∂µ
∑
n

δ3(xi − xin(t))
dxµn(t)

dt

= ∂t
∑
n

δ3(xi − xin(t))
dx0

n(t)

dt
+ ∂j

∑
n

δ3(xi − xin(t))
dxjn(t)

dt

(4)

Now, let’s look at the first term:

=
∑
n

[
δ3(xi − xin(t))

d

dt
1 + ∂tδ

3(xi − xin(t))

]
(5)

=
∑
n

dxjn
dt

∂

∂xjn
δ3(xi − xin(t))

Now, because
∂

∂xin
δ3(xi − xin(t)) = − ∂

∂xi
δ3(xi − xin(t)),

we can change the j to an i summation index in this equation, and then it cancels
with the second term of Eq. 7.
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(b) Here, the procedure is essentially the same, except that we carry around an P µ:

∂µT
µν
pp = ∂µ

∑
n

∫
dτn P

ν
n (τn)δ4(xα − xαn(τn))Uµ

n (τn) (6)

= ∂µ
∑
n

∫
dτn δ(t− x0

n(τn))δ3(xi − xin(τn))
dxµn(τn)

dτn
P ν
n (τn)

= ∂µ
∑
n

∫
dτn
dt
dt δ(t− x0

n(τn))δ3(xi − xin(τn))
dxµn(τn)

dτn
P ν
n (τn)

= ∂µ
∑
n

∫
dt δ(t− x0

n(τn))δ3(xi − xin(τn))
dxµn(t(τn))

dt
P ν
n (τn)

= ∂µ
∑
n

δ3(xi − xin(t))
dxµn(t)

dt
P ν
n (t)

= ∂µ
∑
n

δ3(xi − xin(t))
dxµn(t)

dt
P ν
n (t)

= ∂t
∑
n

δ3(xi − xin(t))
dx0

n(t)

dt
P ν
n (t) + ∂j

∑
n

δ3(xi − xin(t))
dxjn(t)

dt
P ν
n (t)

(7)

Now, though, the ∂t in the first term spits out a second part that does not cancel:

∂µT
µν
pp =

∑
n

δ3(xi − xin(t))
dP ν

n (t)

dt
=
∑
n

δ3(xi − xin(t))f νn(t).

Then, to get the desired expression we just reverse the initial steps to ‘add back
in’ the

∫
dτ and recover the covariant-looking expression

∂µT
µν
pp =

∑
n

∫
dτnδ

4(xα − xαn(τn))f νn(τn),

2. A light beam is emitted in vacuo from a height of 10 m and in a direction parallel to
the surface of the Earth. Assuming for present purposes that Earth is flat, what is
the light beam’s distance from Earth after after it travels 1 km? (Use the equivalence
principle).

Solution: The time taken by the light to travel a kilometer is given by:

4t =
103 m

c
=

103 m

3 · 108 m/s
=

1

3
· 10−5 sec

And so, the distance moved by the freely falling frame is:

4y =
1

2
a4t2 =

1

2
(9.8m/s2) · (1

3
· 10−5 sec)2 = 5.44 · 10−11m

Yielding a final height of the light beam above the Earth’s surface of:

Y = 10m− 5.44 · 10−11m
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3. Although gravitational time dilation seemed shocking when Einstein first realized it,
it’s pretty closely tied to the redshift of photons, which is pretty unavoidable. In
class we derived the redshift of photons in a gravitational field from the equivalence
principle, but it seems that if photons did not redshift when going from low- to high-
potential, you could build a perpetual motion machine that creates arbitrary amounts
of free energy.

(a) Give a reasonably explicit design for such a machine: assume special relativity,
Maxwell’s EM, quantum mechanics, etc., but assume that photons move through
the gravitational potential φ with fixed wavelength, and show that you can pro-
duce infinite energy from a machine in such a world.

(b) Extra credit (i.e. have not tried myself): can you show quantitatively for a specific
system (or better yet in general, but that’s greedy) that the redshift must be given
by δλ/λ = δφ/c2 in order to avoid the free-lunch ‘problem’?

Solution:

(a) I got a lot of pretty vague answers for this one, and very few patentable ideas.
It’s pretty clear that to get the infinite energy source, you need to send photons
up the gravitational potential, then convert the photon’s energy to another form
of energy (like rest mass) that we know picks up energy as we go back down the
potential. There were various ideas for this.

A simple one, adopted from some of yours, I will call the ‘happy fun energy ball’
(HFEB). It has rest mass m and different energy levels, and in particular it can
absorb a photon to go from energy level E1 to E2 using photon energy ∆E12.
(For simplicity let’s say this is the smallest increment of energy it can absorb.)
It also bounces with near-perfect elasticity. But when it bounces, it gives off two
photons, one of energy Ẽ and one of energy ∆E12. Now, we sit this in a mirrored
room and let it bounce (we could use a bunch of them if we like). It starts to give
off photon pairs. But whenever it absorbs a ∆E12 photon, it descends the gravity
well with a bit more rest mass, m + ∆E12, so it picks up an extra ∆E12gδh in
energy relative to what it lost on the ascent, where δh is the height difference
between he top of its trajectory and where it absorbed the photon. When it
bounces, it gives off a ∆E12 photon completing the cycle except for this extra
energy, which comes out in the Ẽ photon. So all of the Ẽ photons are effectively
free energy.

(b) I think I’m going to defer this one until later in the quarter after we’ve talked
about conserved quantities in GR.

4. Which of the following are (differentiable) manifolds, and if not, why not:

(a) The subset of <2 satisfying xy(x2 + y2 − 1) = 0.

(b) The 2-sphere described in <3 by x2 + y2 + z2 = 1, where we identify each point
(x, y, z) on the sphere with another point (x, y,−z)

(c) The same sphere, but identifying (x, y, z) with (−x,−y,−z).

Solution:
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(a) The subset of <2 that satisfies xy(x2 + y2 − 1) = 0 includes the three solutions to
that equation: the lines x = 0 and y = 0, and the circle x2 + y2 = 1. It is not a valid
differentiable manifold because of the 5 junction points between the solutions (x=0
and y=0, x=0 and y=±1, y=0 and x=±1).

(b) The 2-sphere in <3, with each point (x,y,z) on the sphere identified with another
point (x,y,-z), is not a manifold because it has a boundary at z=0. The points at z=0
are mapped onto themselves. This means that this little region can be mapped to the
half plane z ≥ 0, but not to an open subset of RN . It is a manifold with boundary but
not a manifold.

(c) The 2-sphere in <3, with each point (x,y,z) on the sphere identified with another
point (-x,-y,-z) is fundamentally different from part (b) in that no point is identified
onto itself. Therefore every local section on the sphere can be mapped to an open
subset of <3, ie. there is no boundary on the manifold.
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