Physics/Astronomy 226, Problem set 5, Due 2/17
Solutions

Reading: Ch. 3, start Ch. 4

1. Prove that Ry,ag + Raapy + Bagua = 0.

Solution:

We can evaluate this in a local inertial frame, in which the Christoffel symbols (but
not their derivatives) vanish, so that:

R)\Z/aﬁ = g)\p(aargy - aﬁrgy) (1)

1
= §(aaal/g)ﬁ - aaa)\gﬁu - aﬁaug)\a + aﬂa)\gau)- (2)
Under the permutation of indicies v — a — 3 — v,

1
R)\a,Bz/ = 5(8,88049)\1/ - 8,88)\91/& - ayaag)\ﬂ + auakgﬁa)- (3)

Under another permutation of v — o —  — v,

1
R/\/Bua = 5(81/869)\(1 - auakgaﬁ - 8Ocaﬂg)\u + aaa)\gl/ﬁ)' (4)

Taking the sum of the terms,

%[(aaaugAﬁ - &xaag)\ﬁ) + (aﬂaagAV - aaa@’g)\l/) + (avaﬁgka - aﬁal/gka)"i_
00 (93 — 9pv) + 030A(Gar — Gva) + 0OA(9Ba — Gap)]- 5
5

The first three terms vanish because the partial derivatives commute, and the last
three terms vanish because the metric g, is symmetric. Therefore,

R vap] —

R)\z/aﬂ + RAaﬂu + R)\ﬁya - R)\[Vam =0. (6)

Because this is a tensorial equation, and is true in our locally inertial coordinates, it
is always true.

2. Picture a donut in 3d Euclidean space. It may be either chocolate or glazed, as long as
when viewed from the top it looks like two concentric circles of radius r; and ro > ry.
Let b= (ry +72)/2 and a = (ry — 1) /2.



(a) Set up coordinates 6, ¢ on the donut surface (for consistency, let 6 label the angle
about the center of the donut as measured from above, and ¢ measure the angle
around a circular cross-section of the donut.)

(b) Write down the metric g;; this surface inherits from the Euclidean space it is

embedded in.
(c) Compute all non-vanishing connection coefficients Los

(d) Compute all nonzero components of R,q3, R, and R.

ma)

Solution:

Given a torus with outer radius R and inner radius r, we make the assignments
a=(R—7)/2and b = (R+7r)/2. We embed it in R* with cylindrical coordinates
r,0, z, such that:

z = asin(g)
r = b+ acos(p) (7)
6 =6.
The metric is then:
ds® = dz* + dr? + r?df? = a*de* + (b + acos(¢))?db? ()
or,
a’ 0
G = ( 0 (b—l—acos(gb))2) ©)
and

9" = (a: b+ acgs(¢))_2> ' (10)

We start by finding the non-zero connection coefficients. For upper index 6, we must
evaluate gy, T, F§¢ and szﬁ' Given that

g 1 go
F,uz/ = §g (a,uglla + aygcru - aag,uz/)y (11)
we have:
ré, =0
r‘Y, =0
¢
o, = 36" 0.00 (12)
= Greetd)
~+a cos

For upper index ¢, we evaluate the terms Fﬁd), Pg(b’ Fio and I‘Z’g.
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¢ _

re, =0

Iy, =0

Loy = —39%°0s00 (13)
= 2O} 4 acos(¢))

I = 0.

We now want to find the non-zero components of the curvature tensor. Before evalu-
ating a component at random, let us consider these properties:

e If n = 2 and there are %nz(n2 — 1) independent components of the tensor, we

only expect one independent component overall.

® R, = —Ropu s0 anon-zero component must have its first two indicies distinct
(i.e. one must be 6 and the other ¢).

® R = Rupe, so the last two indicies must also be distinct for the component
to be non-zero.

Therefore, we conclude that Ry, must be non-zero. It’s easiest to compute it with
one raised index:

— A A
Rgcr/,w - aurzp/oe_ aVF%U —g FZ)\FVU - FZ)\F,LLU
7 R — %0 <<1<;>¢ o) in(¢) (14)
_ —asin _(_—asin 2
- a‘b( (b+acos(¢)) ) ( (b+acos(¢)) )
_ ( a cos(¢) )
b+a cos(¢)

Lowering the index by contraction:

Rogos = gorR g,

= 999R6¢9¢ (15)
= acos(¢)(b+ acos(¢)).
All the other non-zero components can be found by symmetry.
Roopo = —Roo0p = —Rosgo = Rogoo (16)

We find the Ricci tensor by contraction, R, = gaﬁRa#ﬁy, so that:

Ros = 9%°Rypeo
= —C‘ﬁ;@(m acos(¢))
99 Re¢9¢>

a cos(¢)
" btacos(e)”

(17)

Ry

The Ricci scalar R is also found by contraction, where R = Rl = g"”R,,,. Therefore,

R = ¢"Rgg+ g* Ryy
2 cos(¢) (18)
a(btacos(¢))”
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FIG. 1: Torus (figure stolen from Mathworld website).

It is worth noticing two things about this problem. Firstly, the torus is not maximally
symmetric as defined by Carroll, i.e. there does not exist a constant « such that
Rpop = a‘z(gpugg,, — gpw9ou). We might have suspected this, since the torus doesn’t
have as many symmetries as the space in which it is embedded. Secondly, if one ignores
the pesky word “embedded” in the problem set, one can simply slice open the torus
and put it in lovely flat R? where all connection coefficients and components of the
curvature tensor are zero!

. The donut hole left over from the above donut has a roughly spherical surface. A
sphere with coordinates (6, ¢) has metric

ds®> = df* + sin® 0dp*.
(a) Show that lines of constant ¢ (longitude) are geodesics, and that the only line of

constant € (latitude) that is a geodesic is the § = 7/2 (the equator).

(b) Take a vector with components V* = (VY V¢) = (1,0) and parallel-transport it
once around a circle of constant latitude, 8 = 6,. What are the components of
the resulting vector, as a function of 6,7

Solution:

Consider a 2-sphere with the metric:

ds* = df? + sin® 0 d¢

a) We must first compute the connection coefficients, given by:

1
F)\,uy = 297 (augu)\ + aug/\u - a)\guu)

The only nonzero terms will come from Jygess. The non-zero connection coeflicients

are therefore: )

%y = —0, = Oy(sin®0) = cot
o¢ 2946 6949 2sin 0 b(sin”0) = co
1
F(bd,g = —(9gg¢¢ = cot 0
2940
-1

1
I = Do Gpp = 539(81112 0) = —sinf cos b

2900
We may now look at the geodesic equation:
dPxt, daf da”

o———— =20
dr? T dr dr

For = ¢, we have:

d?z? 5 dz? dx? s dx? dx?
007 1 w0 - —
dr? dr dr dr dr
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Substituting for the connection coefficients:

d?>¢ do db
T 4 9coth——= =0 19
dr2 +aco dr dr (19)
For 1 = 6, we have:
a2z g dz?dx? At/ o\’

It can be seen that if ¢ were constant, then geodesic equation (7) will be satisfied
trivially, and Eq. (8) will be satisfied if 7 is linearly related to 6.

If 6 were constant, then Eq. (7) is likewise satisfied for 7 linearly related to ¢. But

geodesic equation (8) is:
: dp\*
sin 6. cos 6, ) = 0

T

This will be satisfied while varying ¢ only if the constant 6. is 0, 7, , 37”, 2m..... The
choices 6. = 0, 7,27 are uninteresting because they represent motion on the poles,
so varying ¢ does nothing. The choices 0. = 7, 3™ correspond to motion along the

2
equator.

b) Consider a vector with components V* = (V¢ V¢) = (1,0). If the vector is parallel
propagated around a circle of constant § = 6., it must satisfy the equation of parallel
transport along its path:

avr dx®
r“,,—Vve=0
PP
For ;1 = 6 and p = ¢, this becomes:
av? , dx? 8 av? ) do .4
e + ¢¢KV =N sm@OCOSG()aV =0
dve dx® dve do
P I‘¢ _ ] - té) _ 0 —
i T V= gy ooty V=0
Re-writing % as %%, we have 2 coupled 1st order equations to integrate:
d 0
% —sinf,cos6,V? =0
]
% +cot,V% =0

These decouple into two 2nd order equations:

d?ve
00 +cos?0,V? =0
d2 6
d;; +cos?0,V? =0



The general solution to these is:
V¢ = Acos(¢cosb,) + Bsin (¢cosb,)

V% = Ccos (¢ cosb,) + Dsin (¢ cosb,)

We can solve for the constants using the initial conditions on V' and % (found by
evaluating the coupled 1st order equations above at ¢ = 0):

(V?(0),V(0)) = (1,0)

= A=0and C =1

av? ave
— , —— = (0, —cot b,)
( 49 lo=o 49 ¢0)
= B=-— _1 and D =0
sin 6,

Therefore, V(¢ = 27) is given by:

in (2
(VO V9) = ( 27 cos ] _u>
sin 6,

If 6, = 5 (parallel transport along the equitorial geodesic), then we get back our

original vector at ¢ = 27 as expected. Also, the norm of V is equal to one as it should
be:

sin? [¢ cos 6,

=1
sin? 6,

G V*VY = oV + g¢¢(6’o)V¢V¢ = cos” [¢ cos O] + sin? 0,



