
Physics/Astronomy 226, Problem set 5, Due 2/17
Solutions

Reading: Ch. 3, start Ch. 4

1. Prove that Rλναβ +Rλαβν +Rλβνα = 0.

Solution:

We can evaluate this in a local inertial frame, in which the Christoffel symbols (but
not their derivatives) vanish, so that:

Rλναβ = gλρ(∂αΓρβν − ∂βΓραν) (1)

=
1

2
(∂α∂νgλβ − ∂α∂λgβν − ∂β∂νgλα + ∂β∂λgαν). (2)

Under the permutation of indicies ν → α→ β → ν,

Rλαβν =
1

2
(∂β∂αgλν − ∂β∂λgνα − ∂ν∂αgλβ + ∂ν∂λgβα). (3)

Under another permutation of ν → α→ β → ν,

Rλβνα =
1

2
(∂ν∂βgλα − ∂ν∂λgαβ − ∂α∂βgλν + ∂α∂λgνβ). (4)

Taking the sum of the terms,

Rλ[ναβ] = 1
2
[(∂α∂νgλβ − ∂ν∂αgλβ) + (∂β∂αgλν − ∂α∂βgλν) + (∂ν∂βgλα − ∂β∂νgλα)+
∂α∂λ(gνβ − gβν) + ∂β∂λ(gαν − gνα) + ∂ν∂λ(gβα − gαβ)].

(5)

The first three terms vanish because the partial derivatives commute, and the last
three terms vanish because the metric gµν is symmetric. Therefore,

Rλναβ +Rλαβν +Rλβνα = Rλ[ναβ] = 0. (6)

Because this is a tensorial equation, and is true in our locally inertial coordinates, it
is always true.

2. Picture a donut in 3d Euclidean space. It may be either chocolate or glazed, as long as
when viewed from the top it looks like two concentric circles of radius r1 and r2 > r1.
Let b = (r1 + r2)/2 and a = (r2 − r1)/2.
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(a) Set up coordinates θ, φ on the donut surface (for consistency, let θ label the angle
about the center of the donut as measured from above, and φ measure the angle
around a circular cross-section of the donut.)

(b) Write down the metric gij this surface inherits from the Euclidean space it is
embedded in.

(c) Compute all non-vanishing connection coefficients Γuαβ.

(d) Compute all nonzero components of Rµναβ, Rµν , and R.

Solution:

Given a torus with outer radius R and inner radius r, we make the assignments
a = (R − r)/2 and b = (R + r)/2. We embed it in R3 with cylindrical coordinates
r, θ, z, such that:

z = a sin(φ)
r = b+ a cos(φ)
θ = θ.

(7)

The metric is then:

ds2 = dz2 + dr2 + r2dθ2 = a2dφ2 + (b+ a cos(φ))2dθ2 (8)

or,

gµν =

(
a2 0
0 (b+ a cos(φ))2

)
(9)

and

gµν =

(
a−2 0
0 (b+ a cos(φ))−2

)
. (10)

We start by finding the non-zero connection coefficients. For upper index θ, we must
evaluate Γθθθ,Γ

θ
φθ,Γ

θ
θφ and Γθφφ. Given that

Γσµν =
1

2
gσσ(∂µgνσ + ∂νgσµ − ∂σgµν), (11)

we have:

Γθθθ = 0
Γθφφ = 0
Γθφθ = 1

2
gθθ∂φgθθ

= −a sin(φ)
(b+a cos(φ))

Γθθφ = Γθφθ.

(12)

For upper index φ, we evaluate the terms Γφφφ,Γ
φ
θφ,Γ

φ
φθ and Γφθθ.
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Γφφφ = 0

Γφθφ = 0

Γφθθ = −1
2
gφφ∂φgθθ

= sin(φ)
a

(b+ a cos(φ))

Γφφθ = 0.

(13)

We now want to find the non-zero components of the curvature tensor. Before evalu-
ating a component at random, let us consider these properties:

• If n = 2 and there are 1
12
n2(n2 − 1) independent components of the tensor, we

only expect one independent component overall.

• Rρσµν = −Rσρµν so a non-zero component must have its first two indicies distinct
(i.e. one must be θ and the other φ).

• Rρσµν = Rµνρσ, so the last two indicies must also be distinct for the component
to be non-zero.

Therefore, we conclude that Rθφθφ must be non-zero. It’s easiest to compute it with
one raised index:

Rρ
σµν = ∂µΓρνσ − ∂νΓρµσ + ΓρµλΓ

λ
νσ − ΓρνλΓ

λ
µσ

⇒ Rθ
φθφ = −∂φΓθθφ − (Γθφθ)

2

= −∂φ( −a sin(φ)
(b+a cos(φ))

)− ( −a sin(φ)
(b+a cos(φ))

)2

= ( a cos(φ)
b+a cos(φ)

).

(14)

Lowering the index by contraction:

Rθφθφ = gθλR
λ
φθφ

= gθθR
θ
φθφ

= a cos(φ)(b+ a cos(φ)).
(15)

All the other non-zero components can be found by symmetry.

Rφθφθ = −Rφθθφ = −Rθφφθ = Rθφθφ (16)

We find the Ricci tensor by contraction, Rµν = gαβRαµβν , so that:

Rθθ = gφφRφθφθ

= cos(φ)
a

(b+ a cos(φ))
Rφφ = gθθRθφθφ

= a cos(φ)
b+a cos(φ)

.

(17)

The Ricci scalar R is also found by contraction, where R = Rµ
µ = gµνRµν . Therefore,

R = gθθRθθ + gφφRφφ

= 2 cos(φ)
a(b+a cos(φ))

.
(18)
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FIG. 1: Torus (figure stolen from Mathworld website).

It is worth noticing two things about this problem. Firstly, the torus is not maximally
symmetric as defined by Carroll, i.e. there does not exist a constant α such that
Rρσµν = α−2(gρµgσν − gρνgσµ). We might have suspected this, since the torus doesn’t
have as many symmetries as the space in which it is embedded. Secondly, if one ignores
the pesky word “embedded” in the problem set, one can simply slice open the torus
and put it in lovely flat R2 where all connection coefficients and components of the
curvature tensor are zero!

3. The donut hole left over from the above donut has a roughly spherical surface. A
sphere with coordinates (θ, φ) has metric

ds2 = dθ2 + sin2 θdφ2.

(a) Show that lines of constant φ (longitude) are geodesics, and that the only line of
constant θ (latitude) that is a geodesic is the θ = π/2 (the equator).

(b) Take a vector with components V µ = (V θ, V φ) = (1, 0) and parallel-transport it
once around a circle of constant latitude, θ = θ0. What are the components of
the resulting vector, as a function of θ0?

Solution:

Consider a 2-sphere with the metric:

ds2 = dθ2 + sin2 θ dφ

a) We must first compute the connection coefficients, given by:

Γλµν =
1

2gλλ
(∂µgνλ + ∂νgλµ − ∂λgµν)

The only nonzero terms will come from ∂θgφφ. The non-zero connection coefficients
are therefore:

Γφθφ =
1

2gφφ
∂θgφφ =

1

2 sin θ
∂θ(sin

2 θ) = cot θ

Γφφθ =
1

2gφφ
∂θgφφ = cot θ

Γθφφ =
−1

2gθθ
∂θgφφ =

1

2
∂θ(sin

2 θ) = − sin θ cos θ

We may now look at the geodesic equation:

d2xµ

dτ 2
+ Γµρσ

dxρ

dτ

dxσ

dτ
= 0

For µ = φ, we have:

d2xφ

dτ 2
+ Γφθφ

dxθ

dτ

dxφ

dτ
+ Γφφθ

dxφ

dτ

dxθ

dτ
= 0
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Substituting for the connection coefficients:

d2φ

dτ 2
+ 2 cot θ

dφ

dτ

dθ

dτ
= 0 (19)

For µ = θ, we have:

d2xθ

dτ 2
+ Γθφφ

dxφ

dτ

dxφ

dτ
= 0 =

d2θ

dτ 2
− sin θ cos θ

(
dφ

dτ

)2

(20)

It can be seen that if φ were constant, then geodesic equation (7) will be satisfied
trivially, and Eq. (8) will be satisfied if τ is linearly related to θ.

If θ were constant, then Eq. (7) is likewise satisfied for τ linearly related to φ. But
geodesic equation (8) is:

sin θc cos θc

(
dφ

dτ

)2

= 0

This will be satisfied while varying φ only if the constant θc is 0, π
2
, π, 3π

2
, 2π.....The

choices θc = 0, π, 2π are uninteresting because they represent motion on the poles,
so varying φ does nothing. The choices θc = π

2
, 3π

2
correspond to motion along the

equator.

b) Consider a vector with components V µ = (V θ, V φ) = (1, 0). If the vector is parallel
propagated around a circle of constant θ = θc, it must satisfy the equation of parallel
transport along its path:

dV µ

dλ
+ Γµσρ

dxσ

dλ
V ρ = 0

For µ = θ and µ = φ, this becomes:

dV θ

dλ
+ Γθφφ

dxφ

dλ
V φ =

dV θ

dλ
− sin θo cos θo

dφ

dλ
V φ = 0

dV φ

dλ
+ Γφφθ

dxφ

dλ
V φ =

dV φ

dλ
+ cot θo

dφ

dλ
V θ = 0

Re-writing dV
dλ

as dV
dφ

dφ
dλ

, we have 2 coupled 1st order equations to integrate:

dV θ

dφ
− sin θo cos θoV

φ = 0

dV φ

dφ
+ cot θoV

θ = 0

These decouple into two 2nd order equations:

d2V φ

dφ2
+ cos2 θoV

φ = 0

d2V θ

dφ2
+ cos2 θoV

θ = 0
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The general solution to these is:

V φ = A cos (φ cos θo) +B sin (φ cos θo)

V θ = C cos (φ cos θo) +D sin (φ cos θo)

We can solve for the constants using the initial conditions on V and dV
dφ

(found by

evaluating the coupled 1st order equations above at φ = 0):

(V θ(0), V φ(0)) = (1, 0)

⇒ A = 0 and C = 1(
dV θ

dφ

∣∣∣∣
φ=0

,
dV φ

dφ

∣∣∣∣
φ=0

)
= (0,− cot θo)

⇒ B = − 1

sin θo
and D = 0

Therefore, V (φ = 2π) is given by:

(V θ, V φ) =

(
cos [2π cos θo] ,−

sin [2π cos θo]

sin θo

)
If θo = π

2
(parallel transport along the equitorial geodesic), then we get back our

original vector at φ = 2π as expected. Also, the norm of V is equal to one as it should
be:

gµνV
µV ν = gθθV

θV θ + gφφ(θo)V
φV φ = cos2 [φ cos θo] + sin2 θo

sin2 [φ cos θo]

sin2 θo
= 1
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