
Physics/Astronomy 226, Problem set 6, Due 2/24
Solutions

Reading: Ch. 4

1. In flat spacetime, Maxwell’s equations can be written

∂νF
µν = Jµ,

where Fµν = 2∂[µAν]. In going to curved spacetime according to the Equivalence
Principle, we would like to replace partial derivatives such as ∂µ with covariant ones
like ∇µ.

(a) Show that this procedure is ambiguous, i.e. that there are two inequivalent ways
of making this substitution.

(b) Express one set of equations in terms of the others and the Ricci tensor Rµν .

(c) In which if either of your two equations is current covariantly conserved, i.e. does:

∇µJ
µ = 0?

Solution:

(a) To show that making the equation ∂νF
µν = Jµ covariant is ambiguous, we need to

use the fact that partial derivatives like ∂ν commute, while covariant derivatives
like ∇ν do not. The first step is to write F µν in terms of A:

∂νF
µν = 2∂ν∂

[µAν] = ∂ν∂
µAν − ∂ν∂νAµ.

This can also be written as

∂µ∂νA
ν − ∂ν∂νAµ

since the partial derivatives commute. However, since covariant derivatives do
not commute,

∇ν∇µAν −∇ν∇νAµ 6= ∇µ∇νA
ν −∇ν∇νAµ

(b) The difference between the two expressions will be

∇ν∇µAν −∇µ∇νA
ν

If we recall from chapter 3 that (for a torsionless metric) the commutator of two
covariant derivatives acting on a vector is

[∇µ,∇ν ]V
ρ = ∇µ∇νV

ρ −∇ν∇µV
ρ = Rρ

σµνV
σ

We can see that (if we lower the µ) the difference between the two expressions is
just

Rν
λνµA

λ = RλµA
λ = RµνA

ν

Re-raising the µ, we see that

∇ν∇µAν −∇ν∇νAµ = ∇µ∇νA
ν −∇ν∇νAµ +Rµ

νA
ν
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(c) For ∇µJ
µ = 0, we thus need either:

(a) ∇µ∇ν∇µAν −∇µ∇ν∇νAµ = 0

or
(b) ∇µ∇µ∇νA

ν −∇µ∇ν∇νAµ = 0

Now, they can’t both be zero, because going to a LIF, we know that the difference,

∇µRµνA
ν =

1

2
∇νRA

ν

has no particular reason to vanish. But also, (a) reads (swapping µ ↔ ν in the
first term):

= ∇ν∇µ∇νAµ −∇µ∇ν∇νAµ (1)

= [∇ν ,∇µ]∇νAµ

= Rν
λνµ∇λAµ +Rµ

λνµ∇
νAλ

= Rλµ∇λAµ −Rλν∇νAλ

= 0

so the current is conserved in version (a) but not (b).

2. Fill in some of the details of the ‘GR weak field’ calculation I did in class:

Assume spacetime is “nearly flat” in the sense that coordinates can be found for which

gµν = ηµν + hµν , where |hµν | � 1.

We will then raise and lower indices on tensors using ηµν and its inverse, and only go
to first order in hµν in all calculations.

(a) Write down Γδαβ, Rαβ, and R to first order in h, and let h̄αβ ≡ hαβ − 1
2
ηαβh and

h ≡ hµµ.

(b) What are h̄αβ and h̄?

(c) Show then that Gαβ takes the form given in class.

(d) Show that under the coord. transform

xα
′
= xα − εξα(x),

the components of Rα
β , and thus also R, are unchanged. Here, ε� 1 is fixed, and

ξµ is some vector field.

(e) Find the behavior of h̄′αβ under this coordinate transformation, and show that
we can find a ξµ(x) such that under such a coordinate transformation,

∂αh̄′αβ = 0.
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(f) Show then that in these coordinates,

Gµν = −1

2
�h̄′µν .

Solution:

(a)

Γδαβ =
1

2

(
ηδσ − hδσ

)
(∂αhβσ + ∂βhσα − ∂σhαβ) (2)

=
1

2
ηδσ (∂αhβσ + ∂βhσα − ∂σhαβ) +O(h2).

For R, we note that terms with products of Γs will be second order in h, so we
have

Rαβ = ∂λΓ
λ
αβ − ∂βΓλαλ (3)

=
1

2

[
∂σ∂αhβσ − ∂σ∂σhβα − ∂β∂αhσσ + ∂β∂

λhαλ
]

(4)

This gives
R = ∂σ∂βhβσ − ∂σ∂σh.

(b)

h̄αβ = ηανηβµ(hµν −
1

2
ηµνh) (5)

= hαβ − 1

2
ηαβh. (6)

so

h̄ = h− 1

2
· 4 · h = −h.

(c)

Gαβ = Rαβ −
1

2
ηαβh

which can be converted to the form given in class.

(d) We have

δα
′

α = 1− ε∂ξ
α′

∂xα
,

and to first order in ε,

δαα′ = 1 + ε
∂ξα

∂xα′

Then:

Rα′

β′ =

(
1 + ε

∂ξα

∂xα′

)(
1− ε∂ξ

β′

∂xβ

)
Rα

β = Rα
β +O(ε2)
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(e) Going through the calculation yields:

∂ν h̄′µν = ∂αh̄µν + ∂ν∂
νξµ.

Thus we can take the equation ∂ν∂
ν = −∂αh̄µν and notice that it is a wave

equation with a source −∂αh̄µν . This can be solved using Green functions to
obtain a ξµ for which ∂ν h̄′µν = 0.

(f) Given the commutation of partial derivatives, there are three terms in the ex-
pression for Gµν that vanish in our new gauge, leaving just the term in �h.

3. In class we mentioned the energy-momentum tensor for a point-particle following
worldline yα(τ):

T µνpp = m

∫
dτ

1√
−g

δ4(xα − yα(τ))UµUν . (7)

(a) Show that in general,

∇µT
µν =

1√
−g

∂µ(
√
−gT µν) + ΓναβT

αβ,

where U is the 4-velocity as usual.

(b) Use this to show that
∇µT

µν
pp = 0

implies that the yα(τ) obeys the geodesic equation. Cool, huh?

(Hint: plug part a into part b, and convert the x−derivative to a y-derivative.
Then integrate by parts.)

(c) We saw in class that the action

Spp = m

∫
dτ = m

∫
dτ

[
−gµν

dxµ

dτ

dxν

dτ

]1/2

gave the geodesic equation as an equation of motion for xµ(τ).

As discussed in class, we can obtain the energy-momentum tensor by varying the
action with respect to the metric. Show that

−2√
−g

δSpp
δgµν

= Tµν,pp,

with Tµν,pp as given in Eq. 7

Solution:

(a) We have

1√
−g

∂µ(
√
−gT µν) + ΓναβT

αβ = (8)

∂µT
µν + T µν

1√
−g

∂µ(
√
−g) + ΓναβT

αβ =

∂µT
µν + T µνΓαµα + ΓναβT

αβ = ∇µT
µν

where the third line follows from Carroll Eq. 3.33.
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(b) First, since g depends just on x and not y, we can pull then 1/
√
−g out of T µνpp .

Then, using the result of part (a) and noting that the ∂µ = ∂/∂xµ does not act
on Uν (which is only a function of y), we get:

0 =

∫
UµUν∂µδ

4(x− y(τ)) + Γνσµ

∫
UµUσδ4(x− y(τ))dτ

Since the δ depends only on the difference between x and y, we can replace the
∂/∂xµ with −∂/∂yµ. We then have

Uµ ∂

∂xµ
δ4(x− y(τ)) = −Uµ ∂

∂yµ
δ4(x− y(τ)) = − d

dτ
δ4(x− y(τ)),

since Uµ = dyµ/dτ . This gives

0 = −
∫
Uν d

dτ
δ4(x− y(τ)) + Γνσµ

∫
UµUσδ4(x− y(τ))dτ.

Doing an integration by parts on the first term, we then get∫ [
d

dτ
Uν + Γνσµ

∫
UµUσ

]
δ4(x− y(τ))dτ = 0

For this integral to vanish we must have the expression in brackets vanish along
the particle’s trajectory (though only there), so we regain the geodesic equation.

(c) I failed to assign this part of the problem, but here is the solution anyway, since
it is nice.

We have

δSpp
δgµν

= δ

[
m

∫
dτ

{
gµν

dxµ

dτ

dxµ

dτ

}1/2
]

(9)

=
m

2

∫
dτ

{
gµν

dxµ

dτ

dxµ

dτ

}−1/2
dxα

dτ

dxβ

dτ
δgαβ

=
m

2

∫
dτ

dxα

dτ

dxβ

dτ
gαγgβδδg

βδ

Now we can sneak in a δ function:

−2√
−g(y)

δSpp(y) =
−m√
−g(y)

∫ √
−g d4x

∫
dτ δ4(x− y)

dxα

dτ

dxβ

dτ
gαγgβδδg

βδ (10)

=

∫ √
−g(x) d4x

−m√
−g(x)

∫
dτ δ4(x− y)

dxα

dτ

dxβ

dτ
gαγgβδδg

βδ

=

∫
dτ

∫
d4x δ4(x− y)

dxα

dτ

dxβ

dτ
gαγgβδδg

βδ.

Then using the definition of the functional derivative,

δJ ≡
∫
dx

δJ

δf(x)
δf(x),
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we find

−2√
−g(y)

δSpp(y)

δgγδ
=

∫
dτ δ4(x− y)

dxα

dτ

dxβ

dτ
gαγgβδ = Tγδ,pp.
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