
Physics/Astronomy 226, Problem set 8, Due 3/10
Solutions

1. There is extremely strong astrophysical evidence that black holes of mass 106−108M�
reside in the centers of galaxies, and our own galaxy probably hosts a (probably Kerr)
black hole of ∼ 106M�. Assume a = 0, (and Q = 0), and M = 106M� for present
purposes.

(a) Find the radius (in A.U.) of the horizon of our galaxy’s black hole.

(b) The Next-next-next-next Generation Space Telescope (NNNNGST) is observing
the black hole from the innermost stable circular orbit. NNNNGST sends a
packet of observational data along a radial null geodesic to a data analysis lab
(at fixed r � GM, θ and φ) each time it orbits the black hole. What is the
interval between such transmissions according to NNNNGST’s internal clock?
How long must astronomers in the lab wait between packets?

Solution:

(a) The radius of the Schwarzschild event horizon is R = 2GM
c2

where in this case
M = 106M�
From equation (5.96), GM�

c2
= 1.48 · 103m, which yields R = 2.96 · 109m.

To convert to AU, note 1AU = 1.495 · 1011m. Then R = .0198AU .

(b) The radius of the innermost stable circular orbit is rc = 6GM
c2

or rc = 8.88 · 109m.
The time observed between transmissions by the orbiting telescope, τ, is found
using L = rc

2 dφ
dτ

. Integrating,
∫
dτ = rc2

L

∫ 2π

0
dφ or τ = 2πrc2

L
.

For this orbit, L =
√

12GM
c

, so τ = 2π(8.88·109m)2√
12(3·108m/s)(1.48·109m)

= 322s

The time observed in the lab will be dilated due to gravitational redshift. The
shift dt

dτ
appears in the equation

E = (1− 2GM

r
)
dt

dτ

Using L =
√

12GM and r = 6GM , the energy can be calculated from

E2

2
= V (r)

This equation is obtained from eqn(5.65) of Carroll, with dr
dλ

set to 0. Substituting

L and r into V (r) = 1
2
− GM

r
+ L2

2r2
GML2

r3
yields

E2

2
=

4

9

or
2
√

2

3
= (1− 2GM

r
)
dt

dτ

The shift is then
√

2 = 1.41, giving ∆tlab = 1.41 · 322s = 455s.
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2. Consider Einstein’s Equations in vacuum, but with a cosmological constant: Gµν +
Λgµν = 0. Solve for the most general spherically symmetric metric in coordinates
(t, r, θ, φ) such that the metric reduces to the Schwarzschild one when Λ = 0. (Hint:
write the EEs in terms of Rµν rather than Gµν by moving Λ to the r.h.s. The solution
then closely follows Carroll’s Sec. 5.1-5.2.)

Solution:

Using Einstein’s Equations with a Cosmological constant, we have:

Rµν −
1

2
Rgµν + Λgµν = 0

contracting with gµν we get R = 4Λ. Plugging this back into Einstein’s equations,
they now read:

Λgµν = Rµν (i)

Using this equation we can constrain the most general spherically symmetric solution
to the metric in a vaccum. This is given in Carroll by the equation:

ds2 = −e2αdt2 + e2βdr2 + r2dΩ2 (ii)

Here α and β are functions of r and t. Using Birkhoff’s Theorem we can use Einstein’s
equations to constrain β and α placing all the time dependence of the metric on α,
then we can re-define the time coordinate to take out all explicit time dependence
from α. The algebra involved here is similar to the procedure I will employ below in
another similar step in this problem. In the end we will get a metric that looks just
like equation (ii) above but with α and β only dependent on r in our new coordinate
system. From this new metric it is possible to write all of the components of the
Reimann Curvature tensor(and thus the Ricci tensor). The components that will be
employed to solve this problem are Rθθ, Rtt, and Rrr. From Carroll we have:

Rtt = e2(α−β)(∂2
rα + (∂rα)2 − ∂rα∂rβ +

2

r
∂rα)

Rrr = −∂2
rα− (∂rα)2 + ∂rα∂rβ +

2

r
∂rβ

Rθθ = e−2β(r(∂rβ − ∂rα)− 1) + 1

From the proper time interval above we can see that gtt = −e2α, grr = e2β, and gθθ = r2.
Plugging these values into equation (i) above we will get three equations back, one for
the tt component, one for the rr component, and one for the θθ component. Dividing
each side of the tt equation by e2α and then adding this equation to the rr equation
multiplied by e−2β, many terms cancel and we are left with the equation:

2

r
(∂rα + ∂rβ) = 0

Pulling out the ∂r we can see that α− β = c where c is a constant. If we re-label the
time coordinate such that t → te−c then we can absorb e−c into the new scaling of
our time and have α = −β if we maintain the same form of the metric as given above.
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With that we can now solve for α and then have β and thus have the whole metric.
Now we will use the θθ component of equation (i) to solve for α:

Rθθ = Λgθθ

e−2β(r(∂rβ − ∂rα)− 1) + 1 = Λr2

use α = −β and write the equation for α:

e2α(2r(∂rα) + 1) = −Λr2 + 1

notice that doing the product rule backwards says:

∂r(re
2α) = −Λr2 + 1

We can integrate this equation and find:

re2α =
−Λr3

3
+ r + C

Here C is just an arbitrary integration constant, it will become obvious what it is in
a moment. Solving for −e2α gives gtt by definition. And since α = −β grr = e−2α.
Also, we can note that the integration constant must = −2GM when we compare to
the Schwarzchild metric in the limit that Λ→ 0. In the end we find:

gtt = (1− 2GM

r
− Λr2

3
)

grr =
1

1− 2GM
r
− Λr2

3

gθθ = r2

gφφ = r2 sin θ

3. Consider once again the ’wormhole’ metric:

ds2 = −dt2 + dr2 + (b2 + r2)dΩ2,

where −∞ < t < ∞, −∞ < r < ∞. Previously, you have computed Tµν and other
tensors for this metric, and the undergrads in the class have computed embedding
diagrams for it.

(a) Define a conserved energy E and angular-momentum L in terms of r, φ, and their
derivatives.

(b) Show that an observer who falls freely and radially in this spacetime moves along
the worldline r = vt, θ=const., φ=const., where v =const.< 1

(c) Derive an equation like Carroll’s 5.65-5.67, i.e. a 1-D particle in an effective
potential.

(d) Analyze the orbits in this geometry, in the same manner we did for the
Schwarzschild metric.

Solution:

Don’t have one yet.
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