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Supersymmetry

Almost all of the talks at this meeting have involved
supersymmetry in an essential way.
Motivations:

1 Hierarchy
2 Unification
3 Dark Matter

Worry: Little Hierarchy, 1% Fine tuning (or worse).
Also, much about gauge mediation.
Motivations:

1 Flavor
2 Rich dynamical possibilities, esp. with metastable

supersymmetry breaking
3 Improved tuning if scale of messengers low (e.g. with

GGM, 10% or worse (Carpenter)).
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Supersymmetry in String Theory

Most of what we understand in string theory is supersymmetric,
but perhaps a crutch. Any reason of principle that we might
think low energy susy an outcome?
In models we understand, problems:

1 Moduli
2 Susy breaking
3 c.c.
4 Unification – in what sense generic?

If susy discovered, or not, will tell us something about string
theory. But at present, any reason of principle to expect low
energy susy?
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The Landscape

Biggest reason not to like: the Landscape is the Damocles
sword hanging our heads. If explanation of hierarchy like that of
c.c., no low energy consequence. Bleak scenario for LHC.
But at least the landscape addresses the basic limitations
which have frustrated us in string theory. Still, frustrating:

No way to find the state which describes our universe

We lack any complete classification of states, much less
some sort of (statistical) catalog.

But I’ll argue that there are principled reasons to think SUSY is
an outcome of such a picture. Perhaps even low energy gauge
mediation. Hardly a proof – I don’t expect to convince most of
you today. But I hope this might be the kernel of an argument,
and that, at the least, within this structure, the discovery or not
of supersymmetry might help us pose useful questions in string
theory.
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The Landscape Framework

Whether or not a landscape underlies the ultimate quantum
theory of gravity, it is arguably the only model we have at
present for how the laws of nature we observe at ordinary
energies [including absence of susy., absence of massless
particles, c.c.] might emerge from the sort of quantum gravities
we understand.
Claim: first should study questions of naturalness.
The obvious place to begin is asking whether states which
exhibit symmetries are in any sense singled out [contrast c.c.].
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IIB Landscape

IIB landscape as a model. Orientifold on a Calabi-Yau manifold.
RR, NS-NS fluxes, Ni , i = 1, . . . I.
Exponentially large number of states possible because large
number of different fluxes, taking large number of possible
values.
Tree level: superpotential for complex structure moduli, zi ;
independent of Kahler moduli, ρ.

W =
∑

i

Ni f (zi) (1)

Kahler potential known; no-scale structure for potential.
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At best can study systematically only small fraction of states.
E.g. KKLT: SUSY stationary points of effective action for z; low
energy effective theory for ρ

W = W0 + e−aρ (2)

Many possible states; W0 sometimes small ⇒ ρ large. α′, gs

expansions perhaps not misleading.
SUSY breaking: D3 branes, breaking in low energy effective
theory (Seiberg’s talk). Sometimes small, positive c.c.
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Expect many non-susy stationary points of the effective action.
Neighborhood of KKLT point typically small ρ, might include
many stationary points with positive, negative c.c. Most not
accessible to any sort of weak coupling or α′ analysis.
One might think that non-susy solutions more common
(Douglas, Susskind). SUSY exceptional? Unlikely?
Here ask about stability. A putative low c.c. state typically
surrounded by a large number of negative c.c. states.
Tunneling to every one must be suppressed.
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What might account for stability?

Known features of string states with a generic character:

Small Coupling

Large volume

Warping

Supersymmetry
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General scaling of tunneling amplitudes (IIB case):

1 Energies scale like N2/V 2, so ∆E ∼ N/V 2 if volume is
same in neighboring states (we have seen volume
changes in KKLT case)

2 Tensions scale like 1/V .
3 Assuming scaling as in thin wall (scaling laws below are

valid more generally), amplitude

A ∼ e−T 4/∆E3

e−V 2/N3

So for large N, need large volume.

So it appears that (without other sources of suppression) one
needs volume scaling like N2/3 in both the initial and final state
to suppress tunneling. Won’t detail here, but warping, small
coupling don’t suppress tunneling.
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Tunneling in Nearly Supersymmetric Theories

Supersymmetry is well-known to suppress tunneling (Witten,
Hull, Deser and Teitelboim, Weinberg)
In flat space case, can understand by noting that there exist
global supercharges, energy-momentum, obeying the usual
susy algebra:

{Qα, Qβ} = Pµγµ.

So no negative energy configurations (no bubbles can form,
grow).
Small susy breaking?
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Tunneling near the Supersymmetric Limit

Limit of small m3/2. Suppose that the cosmological constant of
the "false vacuum" is essentially zero. Then can distinguish
three cases:

1 Lower energy AdS state is non-supersymmetric. In this
case, the zero c.c. state is stable.

2 Lower energy AdS state is supersymmetric or
approximately so, with 〈W 〉 ≫ m3/2M2

p . In this case, the
zero c.c. state is stable, or it is unstable, with decay
amplitude given by a universal formula:

A = e
−2π2

(

Mp
Re m3/2

)2

. (For special cases, this expression
has been derived by Ceserole, Dall’Agata, Giryavets,
Kallosh and Linde).

3 Lower energy AdS state is supersymmetric or
approximately so, with 〈W 〉 ∼ m3/2M2

p . This is the case of
metastable susy breaking. Tunneling suppressed, but not
as strongly; depends on details.
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Derivation of tunneling amplitudes

Without Gravity:
Action for O(4) symmetric thin wall configuration:

B(ρ) = 2π2S1ρ
3 − 1

2
π2ǫρ4. (3)

This action has a stationary point (actually a maximum) for

ρ = 3S1/ǫ. (4)

Michael Dine Symmetries and Naturalness in String Theory



With gravity: true vacuum is AdS; volume grows like surface.
As Coleman-DeLuccia showed:

B(ρ̄) = 2π2(S1 −
2√
3

√

ǫ

κ
)ρ̄3 +

6π2ρ̄2

κ
+ O(ρ̄). (5)

There is a critical value of the parameters for which the
tunneling amplitude vanishes:

√

ǫ/S1 =
√

3κ/2. (6)
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Near critical parameters, thin wall analysis always valid. As one
approaches the critical point, the radius becomes large. Writing

ǫ =
3
4

κS2
1(1 + δ) (7)

one has

B(ρ) = −π2ρ̄3S1δ +
ǫπ2ρ̄2

κ
. (8)

So, for small δ

ρ̄ =
4

κS1δ
(9)

For tunneling between supersymmetric states,

S1 = 2∆W ǫ = 3
|W |
M2

p

so the critical condition is satisfied.
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Moving slightly away from the critical point:

ǫ =
3
4

κS2
1(1 + δ) (10)

one has

B(ρ) = −π2ρ̄3S1δ +
ǫπ2ρ̄2

κ
. (11)

So, for small δ

ρ̄ =
4

κS1δ
(12)

which agrees with the result of CDL in this limit. Note that for
negative δ, there is no stationary point, and correspondingly no
bounce.
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Tunneling with SUSY breaking

Can describe the nearly susy situation quite generally, if the
AdS state is deep. Necessarily a light field in the Minkowski
vacuum, z. Can take

W (z) = µ2z + W0

define z so that 〈z〉 = 0. W0 = 1√
3
eiαµ2Mp.

In the deep vacuum 〈W 〉 = W̃0, W̃0 ≫ W0. So

ǫ ≈ 3
M2

p

(

|W̃0|2 + 3(W0W̃0 + c.c.)
)

. (13)

The change in S1 is of order µ4/Mp. Taking W̃0 to be positive, if
Re W0 < 0, there is no tunneling. If Re W0 > 0, we arrive at

A = e
−2π2

(

Mp
Re m3/2

)2

. (14)
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If W̃0 ∼ W0, all the terms are of order µ4. In general, the
transition is faster:

A ∼ e
−

(

Mp
m3/2

)a

(15)

where 1 < a < 2.
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Branches of the landscape: Varying Degrees of
Supersymmetry

Supersymmetry has been widely studied in string theory and
the landscape (it is the basis of most of the talks at this
meeting). Thinking about the LHC, we are particularly
interested in low energy supersymmetry.

1 Is supersymmetry an outcome of string theory/quantum
gravity/landscape?

2 Are there qualitative features of supersymmetry and its
breaking which might emerge in a generic fashion?
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Landscape Branches

Within the landscape, three branches identified:
1 Non-supersymmetric branch.
2 Supersymmetric branch: expect m3/2 distributed uniformly

on a log scale (roughly susy breaking by non-perturbative
effects as in KKLT, W0 a uniformly distributed random
number).

3 "R Symmetric" branch: W0 dynamically determined. Very
low energy susy (gauge mediation?).
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Conclusion of part 1

While hardly proving low energy supersymmetry, the problem of
stability suggests why branches II and III of the landscape
might be favored. Note that to provide an adequate degree of
stability, a hierarchy between m3/2 and Mp would be more than
adequate. The additional feature of at least a uniform
distribution of ln(m3/2) makes the possibility of low energy susy
breaking plausible.
What about the difference between Branch II and III?
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Discrete Symmetries in the Landscape

Viewpoint: the large number of states in the landscape arise
because of a large number of possible fluxes, each ranging
over a large number of possible values.
Symmetric states are inevitably rare. In order to obtain a state
with symmetries, it is necessary that

All fluxes which transform under the symmetry vanish

With vanishing of the asymmetric fluxes, minima of the
potential for the moduli preserve the symmetry.

For interesting symmetries, one typically finds that 2/3 or more
of the fluxes must be set to zero ⇒ an exponential suppression.
So symmetries uninteresting.
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Cosmological Questions

Perhaps this is too naive. We are accustomed to the idea that
finite temperature favors symmetries. Perhaps other
cosmological considerations might be relevant.
Might symmetric states be attractors? To address this question,
we need both a model for states and a model for cosmology.
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The Bousso Polchinski Model

E.g., Bousso-Polchinski model.

E0 =
1
2

N2
i q2

i − Λ0. (16)

The qi ’s are constants, independent of Ni . They are assumed
to be small enough that all tunneling amplitudes are small. This
requires that the internal manifold be large, with volume scaling
as a positive power of the flux. This model is extremely useful,
first, for illustrating the idea of a discretuum: the model exhibits
a nearly continuous distribution of energies for large fluxes. It
also provides a model for eternal inflation.
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A Cosmological Model

Goal: establish whether there is any reason to think that the
rare states in a landscape exhibiting symmetries are somehow
favored. Burden (for now) not to establish conclusively that this
is the case in an underlying, complete theory of gravity, but
simply to establish some general conditions under which
symmetries might plausibly be favored.
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Postulate a landscape with a large number of (very)
metastable de Sitter states,

Take as “initial condition" universe starts in one such state.
Ask whether, for a non-negligible fraction of possible
starting points, the system finds its way to the symmetric
state.

Suppose that the antecedents of the symmetric state are
short lived and do not experience long periods of
exponential growth.
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The Neighborhood of the Symmetric States

As part of our model, we adopt (Douglas; Kachru) continuous
flux approximation.
Consider a state which is symmetric or approximately
symmetric under an ordinary discrete symmetry. Some subset
of fluxes, Ni , i = 1, . . . , B, respect the symmetry (they are
neutral under the symmetry), and there are minima of the
resulting potential in which only fields neutral under the
symmetry have expectation values. The rest, na, a = 1, . . . , A,
break the symmetry. Putative, low cosmological constant,
symmetric state, ~No.

|na| < |Ni − N0
i | (17)

defines the neighborhood of the symmetric point.
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States exhibiting discrete symmetries are rare in the flux
landscape. But the fraction of states lying nearby such
symmetric points need not be small.
Model this by taking the initial state is taken to lie on the
“hypersphere"

N2
i + n2

a = R2 (18)

Ask fraction of states with:

α2N2
i > n2

a. (19)

Compare:
∫

d INdAnδ(
√

N2 + n2 − R2) (20)

with the same integral, restricted by n2 < α2N2.
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Suppression is

αA
(

A
2

)
I
2

If α ∼ 1, the suppression with increasing A is quite modest.
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If light pseudomoduli in the symmetric vacuum, then energy is
not a simple quadratic polynomial in fluxes as in BP. If none,

E0 =

I
∑

i ,J=1

fIJNINJ +

A
∑

a,b=1

gabnanb (21)

Two cases:
1 gab has only positive eigenvalues. Starting in the

neighborhood of the symmetric state, those transitions
which change the na’s will tend towards the symmetric
state.

2 gab has some negative eigenvalues. The corresponding n’s
will tend to grow, and the system will not tend towards the
symmetric state.
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Non-R Symmetries

Problem: even if all eigenvalues of g positive there is nothing
particularly special about ~N0. If eigenvalues of g, f , are all
similar, if na ≪ Ni

Sb(δna = 1)

Sb(δNi = 1)
∼ N3

n3 (22)

Transitions which change n are much slower than those which
change N. Notion of a neighborhood is not relevant to the
tunneling process. One may reach a state (~N0, ~na), but then
one will transition to big crunches with negative cc.
If elements of g, in addition to being positive, were far larger
that those of f , then some possibility. We will a phenomenon of
this sort in the case of R symmetric vacua.
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R Symmetric States

Working assumption is that in these states, R symmetry
breaking and susy breaking are small, non-perturbative effects
(statistics of branch III). Then changes in N, in the symmetric
limit, are not associated with changes in energy, so they are
potentially highly suppressed.
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Features of R symmetric states: Suppose that we have fields,
XI , which transform under the R symmetry like the
superpotential, and fields, φα, which are neutral. There are
additional fields, ρi , which transform differently than the X ’s
under the R symmetry. Then the superpotential has the form

W = XIFI(φα, ρi) (23)

There will be a moduli space of supersymmetric, R symmetric
solutions (X = ρ = 0) provided there are more φ type fields
than X type fields (typical of CY compactification)..
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For non-zero na, the situation is quite different. We can study
an effective action for the moduli. Their potential is of order n2.
Correspondingly, the masses-squared of the light moduli are of
order n2. Energy is not a simple polynomial in na, but it does
scale as n2.
Study of field theory models indicates that ground states can be
dS or AdS. If much of the neighborhood of the symmetric point
is AdS, we don’t expect a significant probability to reach the
symmetric point. So we will assume that the neighbors of the
symmetric point are predominantly dS.
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Transition rates in the R-symmetric Neighborhood

Crucial difference with the non-R states: the energy in the
symmetric state is naturally small..
To compare tunneling rates for processes with changes in N
with those with changes in n, we need to understand how the
energies of these states depend on n. Expect (examining field
theory models) quite weak, n4/N2. Dependence of bubble
tension also weak, so

Sb(∆N = 1)

Sb(∆n = 1)
=

N9

n9 ! (24)

Transitions towards the symmetric point are likely to be much
faster than other transitions.
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Lessons

This analysis establishes that in a class of model landscapes
and model cosmologies:

Non-R symmetries are unlikely to be attractors

R symmetries may be attractors

The model assumptions are strong; whether they hold in “real"
landscapes is an open question. But it is hard to see how
things could be much better than this.
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Conclusions: Symmetries in a Landscape

It seems plausible that if in (the) quantum theory of gravity,
there is an underlying landscape:

Questions of stability may lead to a preponderance of
supersymmetric states, especially among states with
hierarchies of mass scales.

States with R symmetries may be cosmological attractors,
favoring low energy supersymmetry.

These questions seem not nearly so hard as asking why the
gauge group is what it is, or the specific values of Yukawa
couplings. They have immediate importance for the physics of
the LHC. Perhaps we can make more definitive statements?
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THE END
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