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Plan for the Lectures

Lecture I, Part A: The Standard Model and Beyond after
5 fb−1 at LHC

1 Discovery of the Higgs – almost. The Standard Model is
Complete!(?)

2 Is particle physics over? What’s missing from the Standard
Model?
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Lecture I, part B: Supersymmetry Introduction

1 Why supersymmetry?
2 Basics of Supersymmetry
3 R Symmetries (a theme in these lectures)
4 SUSY soft breakings
5 MSSM: counting of parameters
6 MSSM: features. Sparticle spectrum. Higgs mass.
7 LHC Constraints: Implications for tuning.
8 Beyond the MSSM
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Lecture II: Microscopic supersymmetry: supersymmetry
breaking and its Mediation

1 Gravity Mediation
2 Minimal Gauge Mediation (one – really three) parameter

description of the MSSM.
3 General Gauge Mediation
4 Nelson-Seiberg Theorem (R symmetries)
5 O’Raifeartaigh Models
6 The Goldstino
7 Flat directions/pseudomoduli: Coleman-Weinberg potential

and finding the vacuum.
8 Integrating out pseudomoduli (if time) – non-linear

lagrangians.
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Lecture III: Dynamical (Metastable) Supersymmetry
Breaking

1 Non-renormalization theorems
2 SUSY QCD/Gaugino Condensation
3 Generalizing Gaugino condensation
4 A simple approach to Dynamical, Metastable

Supersymmetry Breaking: Retrofitting.
5 Retrofitting – a second look. Why it might be right

(cosmological constant!).
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Lecture IV: Naturalness Revisited
Landscape as a Model to Confront Questions of Naturalness

1 What can we learn from String Theory?
2 Landscape Models: Definition
3 Landscape Models: Implications
4 Assessment.
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For the rest of these lectures, I will accept that there is a Higgs
with mass approximately 125 GeV, with couplings close to
those predicted by the Standard Model. I am willing to bet that
this is the case, though, as you’ll see, I wish the mass had been
a bit smaller, or the couplings appreciably different than those
predicted by the SM.

We should pause. This is a triumph. The Standard Model is
complete. The simplest version of the Higgs model is at least
an approximate description of the breaking of electroweak
symmetry.
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What is missing from the Standard Model

We know the Standard Model cannot be a complete theory of
nature; fails to account for known facts.

Top down (energy scales)
1 Doesn’t incorporate General Relativity (UV behavior,

quantum mechanics of black holes...)
2 Doesn’t account for inflation
3 Doesn’t account for neutrino mass
4 Doesn’t account for the baryon asymmetry
5 Doesn’t account for dark matter
6 Strong CP problem
7 Many parameters (related: not “UV complete")
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And several hierarchy problems (in rough order of severity):
1 The dark energy (10−120) (The problem of the

Cosmological Constant (The CCP)
2 The hierarchy between the scale of weak interactions and

the Planck scale (10−32) (The EHP)
3 The hierarchy between the scale of neutrino masses and

the Planck scale (10−8?) (The NMP)
4 The hierarchy between the scale of inflation and the Planck

scale (10−12?) (The it ISP)
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To what do these questions point?

Theorist have and will continue to address all of these questions.
Some of these can be considered by themselves, e.g. the existence
of consistent theories of quantum gravity. Some of these lead to
models, which might be tested by observation if we are very lucky
(inflation).

Of the the hierarchy problems, the weak/Planck scale seems to point
directly at LHC scale physics. We will see that some solutions to this
solve or at least ameliorate the others. But the existence of other
hierarchies, esp. the dark energy, leads to unease as to whether we
should see evidence in LHC physics for a solution to the EHP.

Two ways to understand:

1 Dimensional Analysis: m2
h = Λ2. Λ: some microphysical scale.

Mp? Mgut? Mstring?

2 Feynman diagrams: already at one loop, quadratically divergent.
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Technicolor: A beautiful solution to the EHP

Suppose left Higgs out of Standard Model. Then strong
interactions would “break" SU(2)× U(1)→ U(1), through the
condensate

ūu = d̄d = Λ3
QCD. (1)

The W and Z would be quite light, with masses of order 10’s of
MeV.
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Basic idea in technicolor is very simple. Postulate a new set of
strong interactions, say SU(N), with ΛTC ∼ TeV, and
Techniquarks Q, Ū, D̄ in N, N̄ representations, and
doublets/singlets of SU(2) with suitable hypercharge

Closely related: all models of strongly coupled Higgs,
composite Higgs, Randall Sundrum. I will lump them all
together.
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What’s wrong with technicolor?

Prior to the LHC program
1 Precision electroweak physics
2 Flavor physics – obligated to explain everything; fails. Even

if one pretends, leads to phenomenological catastrophe.
Most important: we now (almost) know that there is a light,
SM-like Higgs!
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Scorecard for Solutions of Hierarchy Problem

Models Pr EW Flavor CP DM Unify DSB
Technicolor X X X X OK X OK
Other Strong X X X X ? X OK
RS ? X? X? X? ? X OK
SUSY OK OK OK- OK- OK OK OK
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SUPERSYMMETRY AND THE HIERARCHY PROBLEM
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Supersymmetry

Virtues
1 Hierarchy Problem
2 Unification
3 Dark matter
4 Presence in string theory (often)
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Hierarchy: Two Aspects

1 Cancelation of quadratic divergences
2 Non-renormalization theorems (holomorphy of gauge

couplings and superpotential): if supersymmetry unbroken
classically, unbroken to all orders of perturbation theory,
but can be broken beyond: exponentially large hierarchies.
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But reasons for skepticism:
1 Little hierarchy
2 Unification: why generic (grand unified models; string

theory?)
3 Hierarchy: landscape (light higgs anthropic?)
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Reasons for (renewed) optimism:
1 The study of metastable susy breaking (ISS) has opened

rich possibilities for model building; no longer the
complexity of earlier models for dynamical supersymmetry
breaking.

2 Supersymmetry, even in a landscape, can account for
hierarchies, as in traditional thinking about naturalness

(e
− 8π2

g2 )
3 Supersymmetry, in a landscape, accounts for stability – i.e.

the very existence of (metastable) states.
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Supersymmetry Review

Basic algebra:

{Qα, Q̄β̇} = 2σµ
αβ̇

Pµ.

Note that taking trace:

Q∗αQα + QαQ∗α = 2P0, (2)

SUSY is broken iff vacuum energy vanishes.
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Superspace

It is convenient to introduce an enlargement of space-time,
known as superspace, to describe supersymmetric systems.
One does not have to attach an actual geometric interpretation
to this space (though this may be possible) but can view it as a
simple way to realize the supersymmetry algebra. The space
has four additional, anticommuting (Grassmann) coordinates,
θα, θ̄α̇. Fields (superfields) will be functions of θ, θ̄ and xµ.
Acting on this space of functions, the Q’s and Q̄’s can be
represented as differential operators:

Qα =
∂

∂θα
− iσµαα̇θ̄

α̇∂µ; Q̄α̇ =
∂

∂θ̄α̇
− iθασµ

αβ̇
εβ̇α̇∂µ. (3)
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Infinitesimal supersymmetry transformations are generated by

δΦ = εQ + ε̄Q̄. (4)

It is also convenient to introduce a set of covariant derivative
operators which anticommute with the Qα’s, Q̄α̇’s:

Dα =
∂

∂θα
+ iσµαα̇θ̄

α̇∂µ; D̄α̇ = − ∂

∂θ̄α̇
− iθασµ

αβ̇
εβ̇α̇∂µ. (5)
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Chiral and Vector Superfields

There are two irreducible representations of the algebra which
are crucial to understanding field theories with N = 1
supersymmetry: chiral fields, Φ, which satisfy D̄α̇Φ = 0, and
vector fields, defined by the reality condition V = V †. Both of
these conditions are invariant under supersymmetry
transformations, the first because D̄ anticommutes with all of
the Q’s. In superspace a chiral superfield may be written as

Φ(x , θ) = A(x) +
√

2θψ(x) + θ2F + . . . (6)

Here A is a complex scalar, ψ a (Weyl) fermion, and F is an
auxiliary field, and the dots denote terms containing derivatives.
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More precisely, Φ can be taken to be a function of θ and

yµ = xµ − iθσµθ̄. (7)

Under a supersymmetry transformation with anticommuting
parameter ζ, the component fields transform as

δA =
√

2ζψ, (8)

δψ =
√

2ζF +
√

2iσµζ̄∂µA, δF = −
√

2i∂µψσµζ̄. (9)
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Vector fields can be written, in superspace, as

V = iχ− iχ† + θσµλ̄Aµ + iθ2θ̄λ̄− i θ̄2θλ+
1
2
θ2θ̄2D. (10)

Here χ is a chiral field.
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In order to write consistent theories of spin one fields, it is
necessary to enlarge the usual notion of gauge symmetry to a
transformation of V and the chiral fields Φ by superfields. In the
case of a U(1) symmetry, one has

Φi → eqi ΛΦi V → V − Λ− Λ†. (11)

Here Λ is a chiral field (so the transformed Φi is also chiral).
Note that this transformation is such as to keep

Φi†eqi V Φi (12)

invariant. In the non-abelian case, the gauge transformation for
Φi is as before, where Λ is now a matrix valued field.
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For the gauge fields, the physical content is most transparent in
a particular gauge (really a class of gauges) know as
Wess-Zumino gauge. This gauge is analogous to the Coulomb
gauge in QED. In that case, the gauge choice breaks manifest
Lorentz invariance (Lorentz transformations musts be
accompanied by gauge transformations), but Lorentz
invariance is still a property of physical amplitudes. Similarly,
the choice of Wess-Zumino gauge breaks supersymmetry, but
physical quantities obey the rules implied by the symmetry. In
this gauge, the vector superfield may be written as

V = −θσµλ̄Aµ + iθ2θ̄λ̄− i θ̄2θλ+
1
2
θ2θ̄2D. (13)
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The analog of the gauge invariant field strength is a chiral field:

Wα = −1
4

D̄2DαV (14)

or, in terms of component fields:

Wα = −iλα + θαD − i
2

(σµσ̄νθ)αFµν + θ2σµ
αβ̇
∂µλ̄

β̇. (15)
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In the non-Abelian case, the fields V are matrix valued, and
transform under gauge transformations as

V → e−Λ†VeΛ (16)

Correspondingly, for a chiral field transforming as

Φ→ eΛΦ (17)

the quantity

Φ†eV Φ (18)

is gauge invariant.
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The generalization of Wα of the Abelian case is the
matrix-valued field:

Wα = −1
4

D̄2e−V DαeV , (19)

which transforms, under gauge transformations, as

Wα → e−ΛWαeΛ. (20)
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Supersymmetric Actions

To construct an action with N = 1 supersymmetry, it is
convenient to consider integrals in superspace. The integration
rules are simple:∫

d2θθ2 =

∫
d2θ̄θ̄2 = 1;

∫
d4θθ̄2θ2 = 1, (21)

all others vanishing. Integrals
∫

d4xd4θF (θ, θ̄) are invariant, for
general functions θ, since the action of the supersymmetry
generators is either a derivative in θ or a derivative in x .
Integrals over half of superspace of chiral fields are invariant as
well, since, for example,

Q̄α̇ = D̄α̇ + 2iθασµαα̇∂µ (22)

so, acting on a chiral field (or any function of chiral fields, which
is necessarily chiral), one obtains a derivative in superspace.
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In order to build a supersymmetric lagrangian, one starts with a
set of chiral superfields, Φi , transforming in various
representations of some gauge group G. For each gauge
generator, there is a vector superfield, V a. The most general
renormalizable lagrangian, written in superspace, is

L =
∑

i

∫
d4θΦ†i e

V Φi +
∑

a

1
4g2

a

∫
d2θW 2

α (23)

+c.c.+

∫
d2θW (Φi) + c.c.

Here W (Φ) is a holomorphic function of chiral superfields
known as the superpotential.
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Component lagrangians

In terms of the component fields, the lagrangian includes kinetic
terms for the various fields (again in Wess-Zumino gauge):

Lkin =
∑

i

(
|Dφi |2 + iψiσ

µDµψ
∗
i

)
−
∑

a

1
4g2

a

(
F a
µνF aµν − iλaσµDµλ

a∗) .(24)

There are also Yukawa couplings of “matter" fermions (fermions
in chiral multiplets) and scalars, as well as Yukawa couplings of
matter and gauge fields:

Lyuk = i
√

2
∑

ia

(gaψiT a
ij λ

aφ∗j + c.c.)+
∑

ij

1
2
∂2W
∂φi∂φj ψ

iψj . (25)
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We should note here that we will often use the same label for a
chiral superfield and its scalar component; this is common
practice, but we will try to modify the notation when it may be
confusing. The scalar potential is:

V = |Fi |2 +
1
2

(Da)2. (26)

The auxiliary fields Fi and Da are obtained by solving their
equations of motion:

F †i = −∂W
∂φi

Da = ga
∑

i

φ∗i T a
ij φj . (27)
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A Simple Free Theory

To illustrate this discussion, consider first a theory of a single
chiral field, with superpotential

W =
1
2

mφ2. (28)

Then the component Lagrangian is just

L = |∂φ|2 + iψσµ∂µψ +
1
2

mψψ + c.c.+ m2|φ|2. (29)

So this is a theory of a free massive complex boson and a free
massive Weyl fermion, each with mass m2. (I have treated here
m2 as real; in general, one can replace m2 by |m|2).

Michael Dine Supersymmetry from Bottom Up and the Top Down



An Interacting Theory – Supersymmetry
Cancelations

Now take

W =
1
3
λφ3. (30)

The interaction terms in L are:

LI = λφψψ + λ2|φ|4. (31)

The model has an R symmetry under which

φ→ e2iα/3φ; ψ → e−2iα/3ψ; W → e2iαW . (32)
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Aside 1: R Symmetries

Such symmetries will be important in our subsequent
discussions. They correspond to the transformation of chiral
fields:

Φi → eiriαΦi ; θ → eiαθ (33)

Then

Q → e−iαQ; W → e2iαW (34)

and

φi → eiriαφi ; ψi → e(ri−1)αψi Fi → ei(ri−2)αFi . (35)

The gauginos also transform:

λ→ eiαλ. (36)
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Supersymmetry Cancelation and Soft Breaking
(continued)

The symmetry means that there can be no correction to the fermion
mass, or to the superpotential. Let’s check, at one loop, that there is
no correction to the scalar mass. Two contributions:

1 Boson loop:

δm2
φ = 4λ2 d4k

(2π)4
1
k2 (37)

2 Fermion loop:

δm2
φ = −2λ2 d4k

(2π)4
Tr(σµkµσ̄

νkν)

k4 . (38)

In the first expression, the 4 is a combinatoric factor; in the second,
the minus sign arises from the fermion loop; the 2 is a combinatoric
factor.
These two terms, each separately quadratically divergent, cancel.
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Now add to the lagrangian a “soft", non-supersymmetric term,

δL = −m2|φ|2. (39)

This changes the scalar propagator above, so

δm2
φ = 4λ2

∫
d4k

(2π)4

(
1

k2 + m2 −
1
k2

)
(40)

=

∫
d4k

(2π)4
−m2

k2(k2 + m2)

≈ λ2m2

16π2 log(Λ2/m2).

Here Λ is an ultraviolet cutoff. Note that these corrections
vanish as m2 → 0.
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More generally, possible soft terms are:
1 Scalar masses
2 Gaugino masses
3 Cubic scalar couplings.

All have dimension less than four.
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The MSSM and Soft Supersymmetry Breaking

MSSM: A supersymmetric generalization of the SM.

1 Gauge group SU(3)× SU(2)× U(1); corresponding (12)
vector multiplets.

2 Chiral field for each fermion of the SM: Qf , ūf , d̄f ,Lf , ēf .
3 Two Higgs doublets, HU ,HD.
4 Superpotential contains a generalization of the Standard

Model Yukawa couplings:

W = yUHUQŪ + yDHDQD̄ + yLHDĒ + µHUHD. (41)

yU and yD are 3× 3 matrices in the space of flavors.
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Features of the MSSM Superpotential

We have omitted a set of dangerous terms from W which
violate lepton and baryon number.

QLD̄,QLĒ ,HUL, ŪD̄D̄ (42)

Note that these are dimension four (unlike Standard Model,
where leading B,L violating operators are dimension six).

To explain, postulate “R-parity", Z2 under which quark, lepton
superfields even, HU ,HD odd.
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Soft Breaking Parameters

Need also breaking of supersymmetry, potential for quarks and
leptons. Introduce explicit soft breakings:

1 Soft mass terms for squarks, sleptons, and Higgs fields:

Lscalars = Q∗m2
QQ + Ū∗m2

UŪ + D̄∗m2
DD̄ (43)

+L∗m2
LL + Ē∗mE Ē

+m2
HU
|HU |2 + m2

HU
|HU |2 + BµHUHD + c.c.

m2
Q, m2

U , etc., are matrices in the space of flavors.
2 Cubic couplings of the scalars:

LA = HUQ AU Ū + HDQ AD D̄ (44)

+HDL AE Ē + c.c.

The matrices AU , AD, AE are complex matrices
3 Mass terms for the U(1) (b), SU(2) (w), and SU(3) (λ)

gauginos:

m1bb + m2ww + m3λλ (45)
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Counting the Soft Breaking Parameters

1 φφ∗ mass matrices are 3× 3 Hermitian (45 parameters)
2 Cubic terms are described by 3 complex matrices (54

parameters
3 The soft Higgs mass terms add an additional 4 parameters.
4 The µ term adds two.
5 The gaugino masses add 6.

There appear to be 111 new parameters.
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But Higgs sector of SM has two parameters.
In addition, the supersymmetric part of the MSSM lagrangian
has symmetries which are broken by the general soft breaking
terms (including µ among the soft breakings):

1 Two of three separate lepton numbers
2 A “Peccei-Quinn" symmetry, under which HU and HD rotate

by the same phase, and the quarks and leptons transform
suitably.

3 A continuous "R" symmetry, which we will explain in more
detail below.

Redefining fields using these four transformations reduces the
number of parameters to 105.
If supersymmetry is discovered, determining these parameters,
and hopefully understanding them more microscopically, will be
the main business of particle physics for some time. The
phenomenology of these parameters has been the subject of
extensive study; we will focus on a limited set of issues.
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Two Bonuses of the Supersymmetry Hypothesis

1 Dark Matter
2 Unification
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Imposing R parity to prevent proton decay implies that the
lightest of the new supersymmetric particles (LSP) is stable. An
back of the envelope estimate gives a density about right to
account for the dark matter.

σ ≈ 1
M2

Z
. (46)

Out of equilibrium when

n2
χσ <

T 2

Mp
n ∼ T 3e−mχ/T

Assuming exponent of order 10, gives a density at decoupling
of order, for mχ ∼ mZ , a temperature of order 10 GeV.
Dominates energy at temperatures of order decoupling.

Very detailed computations routine.
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Supersymmetric Unification

In general, at one loop, gauge couplings run according to the
rule:

8π2

g2(µ)
=

8π2

g2(M)
+ b0 log(µ/M). (47)

The SU(2) and U(1) couplings are particularly well-measured
at MZ . If one assumes that the couplings coincide at a scale,
MGUT , one can compute MGUT and α3.
One finds MGUT ≈ 2× 1016 GeV and good agreement for α3.
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(from J. Reuter)
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Constraints

Spectrum must have special features to explain
1 LHC searches severely constrain the spectrum. E.g.

squark, gluino masses close to TeV over much of
parameter space. Charginos (Tevatron, LEP) of order 100
GeV.

2 Absence of Flavor Changing Neutral Currents (suppression
of K ↔ K̄ , D ↔ D̄ mixing; B → s + γ, µ→ e + γ, . . . )

3 Suppression of CP violation (dn; phases in K K̄ mixing).
Latter two features might be accounted for if spectrum highly
degenerate, CP violation in soft breaking suppressed.
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Substantially stronger limits (or discovery) will await 14 TeV
runs.
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The little hierarchy: perhaps the greatest challenge for
Supersymmetry

Biggest radiative correction to the Higgs mass from top quark
loops. Two graphs; cancel if supersymmetry is unbroken.
Result of simple computation is

δm2
HU

= −6
y2

t
16π2 m̃2

t ln(Λ2/m̃2
t ) (48)

Even for modest values of the cutoff (30 TeV), given the limits
on squark masses, this can be 30 times (125 GeV2).

Better if stops are lighter than other squarks. Much attention
focussed on this possibility for maintaining naturalness.
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The problem of the Higgs mass

At tree level in the MSSM, mH ≤ mZ .

But : mH > 114 (= 125?) GeV.

The MSSM limit arises because the Higgs quartic coupling is
controlled, in the limit of exact supersymmetry, by the gauge
couplings.
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Supersymmetry breaking gives rise to corrections to the quartic
coupling. Loop corrections involving top quark: can
substantially correct Higgs quartic, and increase mass.

δλ ∼ 3
y4

t
16π2 log(m̃2

t /m
2
t ). (49)

Corresponding correction to Higgs mass:

m2
h = m2

Z c2
2β +

3m4
t

4π2v2

(
ln(m2

s/m
2
t ) +

X 2
t

m2
s

(1−
X 2

t

12m2
s

)

)
. (50)

Xt = At − µ cotβ m2
S = mt̃1

mt̃2
But 125 GeV typically require m̃t > 10 TeV or tuning of A
parameter. Exacerbates tuning.
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Beyond the MSSM

A widely studied extension of the MSSM: NMSSM.

λSHUHD + κS3. (51)

Introduced to account for µ term, but λ gives additional contribution to
the Higgs quartic coupling.

We will see later that it is in fact natural to add to the model

mSS2 + µHUHD. (52)

This “generalized MSSM" (discussed by Seiberg, Thomas, M.D.)
allows significantly more massive Higgs (Ross et al, Hall et al).
For a range of parameters, described by effective field theory:

δW =
1
M

HUHDHUHD δK = Z †ZH†UHUH†UHU . (53)
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Another alternative to the MSSM: R-Parity
Violation

R parity is seductive. Simple. A beautiful consequence in the
existence of a stable dark matter candidate.

But the need for such a symmetry – unlike in the SM, and the
existence of other dark matter candidates (axions...), as well as
the problems of SU(5) models (unification) in which dimension
five operators lead to conflict with current proton decay limits,
suggest one should contemplate relaxing this requirement.

Most studies consider QLd̄ and other lepton violating couplings.
Following Csaki, Grosman and Heidenreich, consider

λfghūf d̄g d̄h. (54)

∆B = 1; ∆L = 0.
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Doesn’t cause proton decay but constrained by
∆B = 2,∆L = 0 processes:

1 N − N̄ oscillations
2 p + p → K + + K +

At the same time, only interesting if decay of LSP occurs
quickly (i.e. in the detector).
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Csaki et al: These conditions satisfied with assumption of
"Minimal Flavor Violation". Basically couplings suppressed to
particular quarks by their masses, mixing angles.
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Supergravity

If nature is supersymmetric, ultimately the symmetry should be
local.

Some basic features:
Theory specified (at level of terms with two derivatives) by three
functions:

1 Kahler potential, K (φi , φ
∗
i ).

2 Superpotential, W (φi) (holomorphic).
3 Gauge coupling functions, fA(φ) ( 1

g2
A

= 〈fA〉).
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Potential (units with Mp = 1):

V = eK
[
DiWg i īDīW

∗ − 3|W |2
]

(55)

Here gi ī = ∂2K
∂φi∂φ

∗
ī
; g i ī is its inverse.

Diφ is order parameter for susy breaking:

DiW =
∂W
∂φi

+
∂K
∂φi

W . (56)
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Some general features:
1 If unbroken susy, space time is Minkowski (if W = 0), AdS

(W 6= 0).
2 If flat space (〈V 〉 = 0), and broken supersymmetry, then

m3/2 = 〈eK/2W 〉. (57)

3 No continuous global symmetries.
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Mediating Supersymmetry Breaking
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Hidden Sector Supersymmetry Breaking

Generally assumed that supersymmetry is broken by dynamics of
additional fields, and some weak coupling of these fields to those of
the MSSM gives rise to soft breakings. For the moment, we will
model this by a field X , with 〈FX 〉 6= 0.

The classes of models called "gauge mediated" and “gravity
mediated" are distinguished principally by the scale at which
supersymmetry is broken. If terms in the supergravity lagrangian
(more generally, higher dimension operators suppressed by Mp) are
important at the weak (TeV) scale:

Fi = DiW ≈ (TeV )Mp ≡ M2
int (58)

“gravity mediated". If lower, “gauge mediated"; Fi ≈ ∂iW .
In the low scale case, the soft breaking effects at low energies should
be calculable, without requiring an ultraviolet completion; the
intermediate scale case requires some theory like string theory.
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“Gravity Mediation"
Suppose a field with non-zero F component, e.g.

W = f X + W0. (59)

Take, e.g., OR model and couple to supergravity. Add constant to W ,
W0, so that V ≈ 0 at minimum of (supergravity) potential,

3|W0|2 ≈ |FX |2. (60)

Suppose

K = X †X +
∑

φ†i φi . (61)

Then all scalars (squarks and sleptons) gain mass from

|∂W
∂φi

+
∂K
∂φi

W |2 ≈ |W0|2|φi |2. (62)

Universal masses for all squarks and sleptons.
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A terms from, e.g., with W = W0 + yφ3

−3|W |2 ≈ · · · − 3W0yφφφ (63)

i.e. A term proportional to W .

Finally, gaugino masses from
∫

d2θXW 2
α .

Michael Dine Supersymmetry from Bottom Up and the Top Down



“MSUGRA": 3 parameters, m2
o, m1/2, A.

Lsoft = m2
0|φi |2 + m1/2

∑
λAλA + A(W + W ∗). (64)

But: if simply complicate Kahler potential:

K = φ∗i φi + AijkXφ∗i φ
∗
j φ
∗
k + c.c.+ Γijklφiφjφ

∗
kφ
∗
` . (65)

Generates the full set of soft breaking parameters.

Michael Dine Supersymmetry from Bottom Up and the Top Down



So in general, problems of flavor. Possible solution might be an
approximate underlying flavor symmetry; perhaps some
detailed dynamics. But no completely compelling framework
(generic?).
Other issues include gravitino overproduction, moduli problems
(issues also in gauge mediation).
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Minimal Gauge Mediation

Main premiss underlying gauge mediation: in the limit that the
gauge couplings vanish, the hidden and visible sectors
decouple.

Simple model:

〈X 〉 = x + θ2F . (66)

X coupled to a vector-like set of fields, transforming as 5 and 5̄
of SU(5):

W = X (λ` ¯̀̀ + λqq̄q). (67)
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For F < X , `, ¯̀,q, q̄ are massive, with supersymmetry breaking
splittings of order F . The fermion masses are given by:

mq = λqx m` = λ`x (68)

while the scalar splittings are

∆m2
q = λqF ∆m2

` = λ`F . (69)
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In such a model, masses for gauginos are generated at one
loop; for scalars at two loops. The gaugino mass computation
is quite simple. Even the two loop scalar masses turn out to be
rather easy, as one is working at zero momentum. The latter
calculation can be done quite efficiently using supergraph
techniques; an elegant alternative uses background field
arguments.

The result for the gaugino masses is:

mλi =
αi

π
Λ, (70)
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For the squark and slepton masses:

m̃2 = 2Λ2[C3

(α3

4π

)2
+ C2

(α2

4π

)2
(71)

+
5
3

(
Y
2

)2 (α1

4π

)2
],

where Λ = Fx/x . C3 = 4/3 for color triplets and zero for
singlets, C2 = 3/4 for weak doublets and zero for singlets.
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Features of MGM

1 One parameter describes the masses of the three
gauginos and the squarks and sleptons

2 Flavor-changing neutral currents are automatically
suppressed; each of the matrices m2

Q, etc., is automatically
proportional to the unit matrix; the A terms are highly
suppressed (they receive no contributions before two loop
order).

3 CP conservation is automatic
4 This model cannot generate a µ term; the term is protected

by symmetries. Some further structure is necessary.
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General Gauge Mediation

Much work has been devoted to understanding the properties
of this simple model, but it is natural to ask: just how general
are these features? It turns out that they are peculiar to our
assumption of a single set of messengers and just one singlet
responsible for supersymmetry breaking and R symmetry
breaking. Meade, Seiberg and Shih have formulated the
problem of gauge mediation in a general way, and dubbed this
formulation General Gauge Mediation (GGM). They study the
problem in terms of correlation functions of (gauge)
supercurrents. Analyzing the restrictions imposed by Lorentz
invariance and supersymmetry on these correlation functions,
they find that the general gauge-mediated spectrum is
described by three complex parameters and three real
parameters. Won’t have time to discuss all of the features here,
but the spectrum can be significantly different than that of
MGM. Still, masses functions only of gauge quantum numbers
of the particles, flavor problems still mitigated.
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Microscopic Models of Supersymmetry Breaking
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Low Energy Supersymmetry Breaking

While I won’t consider string constructions per se (i.e.
ultraviolet complete theories of gravity), I will focus on an
important connection with gravity: the cosmological constant. I
will not be attempting to provide a new explanation, but rather
simply asking about the features of the low energy lagrangian in
a world with approximate SUSY and small Λ.
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With supersymmetry, an inevitable connection of low
energy physics and gravity

〈|W |2〉 = 3〈|F |2〉M2
p + tiny. (72)

So not just F small, but also W . Why?

1 Some sort of accident? E.g. KKLT assume tuning of W
relative to F (presumably anthropically).

2 R symmetries can account for small W (Banks). We we
will see, < W > can be correlated naturally with the scale
of supersymmetry breaking.Scale of R symmetry breaking:
set by cosmological constant.
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Suggests a role for R symmetries. In string theory (gravity
theory): discrete symmetries. Such symmetries are interesting
from several points of view:

1 Cosmological constant
2 Give rise to approximate continuous R symmetries at low

energies which can account for supersymmetry breaking
(Nelson-Seiberg: continuous R symmetry necessary
condition for [generic] stable supersymmetry breaking).

3 Account for small, dimensionful parameters.
4 Suppression of proton decay and other rare processes.
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Varieties of R symmetric lagrangians

In general, W has R charge 2. Suppose fields, Xi , i = 1, . . .N
with R = 2, φa, a = 1, . . .M, with R charge 0. Then the
superpotential has the form:

W =
N∑

i=1

Xi fi(φa). (73)

Suppose, first, that N = M. The equations ∂W
∂Φi

= 0 are solved if:

fi = 0; Xi = 0. (74)

(R unbroken, 〈W 〉 = 0.) The first set are N holomorphic
equations for N unknowns, and generically have solutions.
Supersymmetry is unbroken; there are a discrete set of
supersymmetric ground states; there are generically no
massless states in these vacua.
(Again, R unbroken, 〈W 〉 = 0.)
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Next suppose that N < M. Then the equations fi = 0 involve
more equations than unknowns; they generally have an M − N
dimensional space of solutions, known as a moduli space. In
perturbation theory, as a consequence of non-renormalization
theorems, this degeneracy is not lifted. There are massless
particles associated with these moduli (it costs no energy to
change the values of certain fields).
If N > M, the equations Fi = 0 in general do not have solutions;
supersymmetry is broken. These are the O’Raifeartaigh
models. Now the equations ∂W

∂φi
= 0 do not determine the Xi ’s,

and classically, there are, again, moduli. Quantum
mechanically, however, this degeneracy is lifted.
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Aside 2

The non-renormalization theorems.
Quite generally, supersymmetric theories have the property
that, if supersymmetry is not broken at tree level, then to all
orders of perturbation theory, there are no corrections to the
superpotential and to the gauge coupling functions. These
theorems were originally proven by examining detailed
properties of Feynman diagrams, but they can be understood
far more simply (Seiberg).

Consider a simple Wess-Zumino model:

W =

(
m
2
φ2 +

λ

3
φ3
)
. (75)

Here I have chosen not to include a linear term in φ; any such
term can be absorbed in a redefinition of φ.
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Suppose that λ = 0. Then the theory has an R symmetry,
under φ carries charge 1. We can think of λ as itself the
expectation value of a chiral field with charge −1 under this
symmetry. Any correction to λ necessarily has the form

δW = λnφ3+n (76)

But this is exactly the structure of tree graphs. This
non-renormalization theorem is a consequence of the
holomorphy of the superpotential.
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Non-Renormalization Theorems for Gauge
Couplings

Here a significant puzzle. Write the gauge field lagrangian as

L = −
∫

d2θ
1

32π2 τW 2
α . (77)

τ a holomorphic parameter.

τ =
8π2

g2 + iθ. (78)

In perturbation theory, symmetry τ → τ + iα, forbids all but one
loop corrections to the coupling (β-function).
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Exact β function

Novikov, Shifman, Vainshtein and Zakharov: framed question in
terms of “Wilsonian" vs. 1PI actions. Derived an “exact" β
function:

β(g) = −
3N g3

16π2

(1 + 2N g2

16π2 )
. (79)

Agrees with two loop beta function (universal). But beyond two
loops, scheme dependent. What is the scheme? Here a simple
explanation (building in part on work of Arkani-Hamed and
Murayama) of the result, and a clear identification of the
scheme – and why it is not singled out by any compelling
physical consideration.
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Observation of AHM: N = 4 theory, suitably deformed, can
serve as a (holomorphic) regulator for the N = 1 theory.

Three adjoint chiral fields, Φi , i = 1,2,3, and an SU(4) R
symmetry.

L =

∫
d4θ

1
g2 Φ†i Φi −

1
32π2

∫
d2θ

(
8π2

g2 + iθ
)

W 2
α (80)

+

∫
d2θ

1
g2 Φ1Φ2Φ3 + c.c.

Action is not manifestly holomorphic in τ . To exploit the power
of holomorphy, necessary to rescale the adjoints so that there
are no factors of g in the superpotential:

Φi → g2/3Φi . (81)
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We can add mass terms for the Φi ’s (for simplicity, we will take
all masses the same, but this is not necessary, and allowing
them to differ allows one to consider other questions):

L =

∫
d4θ

1
g2/3 Φ†i Φi −

1
32π2

∫
d2θ

(
8π2

g2 + iθ
)

W 2
α (82)

+

∫
d2θ(Φ1Φ2Φ3 + mholΦiΦi + c.c.).

Holomorphic presentation of the N = 4 theory.

Michael Dine Supersymmetry from Bottom Up and the Top Down



Under a renormalization group transformation (a change from
cutoff m(1)

hol to m(2)
hol ,

8π2

g2(m2)
=

8π2

g2(m1)
+ 3N log(m(2)

hol/m
(1)
hol) (83)

But the holomorphic masses don’t correspond to the masses of
physical particles; these are, at tree level:

mphys = g2/3mhol . (84)

Substituting in the eqn. for g, yields the NSVZ beta function.

Michael Dine Supersymmetry from Bottom Up and the Top Down



So it is tempting to say that the NSVZ scheme is that
associated with the physical masses of the cutoff fields, i.e.
some “physical" cutoff scale. However, at higher orders, the
actual physical masses of the adjoints receive perturbative
corrections (indeed already at one loop). So the NSVZ scheme,
beyond two loop order, while easy to specify, is just one of an
infinite class of schemes:

mcut = g2/3(mcut )(1 +
g2

16π2 f (g2))mhol . (85)
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Metastable Supersymmetry Breaking

Intriligator, Shih and Seiberg: example of metastable
supersymmetry breaking in a surprising setting: vectorlike
supersymmetric QCD. At a broader level, brought the
realization that metastable supersymmetry breaking is a
generic phenomenon. Consider the Nelson-Seiberg theorem,
which asserts that, to be generic, supersymmetry breaking
requires a global, continuous R symmetry. We expect that such
symmetries are, at best, accidental low energy consequences
of other features of some more microscopic theory.
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O’Raifeartaigh Models

This is illustrated by the simplest O’Raifeartaigh model:

W = λX (A2 − µ2) + mYA. (86)

R symmetry with

RZ = RY = 2; RA = 0; X (θ)→ e2iαX (e−iαθ), etc.. (87)

(Also Z2 symmetry, Y → −Y ,A→ −A forbids YA2). SUSY broken;
equations:

∂W
∂X

=
∂W
∂Y

= 0 (88)

are not compatible.
Features: If m2 > µ2, 〈A〉 = 0 = 〈Y 〉; X undetermined.

Michael Dine Supersymmetry from Bottom Up and the Top Down



Potential for X at one loop (Coleman-Weinberg); 〈X 〉 = 0. X
lighter than other fields (by a loop factor). Scalar components –
light pseudomodulus. Spinor is Goldstino.

〈FX 〉 = λµ2 (89)

is the decay constant of the Goldstino.
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Aside 3. The Coleman-Weinberg Potential

Basic idea of Coleman Weinberg calculations is simple.
Calculate masses of particles as functions of the
pseudomodulus. From these, compute the vacuum energy:

∑
(−1)F

∫
d3k

(2π)3

√
k2 + m2

i (90)

=
∑

(−1)f
(

Λ4 + m2
i Λ2 +

1
(16π2)

m4
i ln(mi)

4
)
.

(E.g. evaluate using formulae of dimensional regularization;
poles cancel due to sum rules). The first two terms vanish
because of features of supersymmetry. The last must be
evaluated, when supersymmetry is broken.

For large X , the potential grows logarithmically with |X |. For
smaller X , need to be more careful.
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One finds (Shih) that if all fields have R charge 0 or 2, then the
R symmetry is unbroken [exceptions, hidden assumptions, e.g.
Shadmi]. Shih constructed models for which this is not the
case. One of the simplest:

W = X2(φ1φ−1 − µ2) + m1φ1φ1 + m2φ3φ−1. (91)
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Continuous Symmetry from a Discrete Symmetry

The continuous symmetry of the OR model might arise as an
accidental consequence of a discrete, ZN R symmetry.
E.g.

X → e
4πi
N X ; Y → e

4πi
N Y (92)

corresponding to α = 2π
N in the continuous R transformation.

Suppose, for example, N = 5. The discrete symmetry now
allows couplings such as

δL =
1

M3

(
aX 6 + bY 6 + cX 4Y 2 + dX 2Y 4 + . . .

)
. (93)

Note that W → e
4πi
N W .

The theory now has N supersymmetric minima, with

X ∼
(
µ2M3

)1/5
αk (94)

where α = e
2πi
5 , k = 1, . . . ,5.
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Metastability

Need a separate lecture to discuss tunneling in quantum field
theory. Suffice it to say that in models such as those introduced
above, the metastable supersymmetric state can be extremely
long lived. In particular, the system has to tunnel a “long way"
(compared with characteristic energy scales) to reach the “true"
vacuum. Thinking (correctly) by analogy to WKB, the amplitude
is exponentially suppressed by a (large) power of the ratio of
these scales.

Michael Dine Supersymmetry from Bottom Up and the Top Down



〈W 〉: Gaugino Condensation

W transforms under any R symmetry; an order parameter for R
breaking.

Gaugino condensation: 〈λλ〉 ≡ 〈W 〉 breaks discrete R without
breaking supersymmetry.

Readily generalized (J. Kehayias, M.D.) to include order
parameters of dimension one.

E.g. Nf flavors, N colors, Nf < N:

W = ySQ̄f Qf ′ + λS3 (95)

exhibits a Z2(3N−Nf ) symmetry, spontaneously broken by
〈S〉; 〈Q̄Q〉; 〈W 〉.
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The dynamics responsible for this breaking can be understood
using familiar facts about supersymmetric gauge dynamics.
Suppose, for example, that λ� y . Then we might guess that S
will acquire a large vev, giving large masses to the quarks. In
this case, one can integrate out the quarks, leaving a pure
SU(N) gauge theory, and the singlet S. The singlet
superpotential follows by noting that the scale, Λ, of the low
energy gauge theory depends on the masses of the quarks,
which in turn depend on S. So

W (S) = λS3 + 〈λλ〉S. (96)

〈λλ〉 = µ3e
−3 8π2

bLE g2(µ) (97)

= µ3e
−3 8π2

gLE g2(M)
+3 b0

bLE
ln(µ/M)

b0 = 3N − NF ; bLE = 3N (98)
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So

〈λλ〉 = M
3N−Nf

N e
− 8π2

Ng2(M)µ
Nf
N . (99)

In our case, µ = yS, so the effective superpotential has the form

W (S) = λS3 + (yS)Nf /NΛ3−Nf /N . (100)

This has roots

S = Λ

(
yNf /N

λ

) N
3N−NF

(101)

times a Z3N−NF phase.
Consistent with our original argument that S large for small λ.
Alternative descriptions of the dynamics in other ranges of
coupling.
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Gauge Mediation/Retrofitting

Retrofitted Models (Feng, Silverstein, M.D.): OR parameter f
from coupling

X (A2 − µ2) + mAY → (102)

XW 2
α

Mp
+ γSAY .

Need 〈W 〉 = fMp = Λ3, 〈S〉 ∼ Λ, for example.

m2 � µ2

SUSY breaking is metastable (supersymmetric vacuum far
away).
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Gauge Mediation and the Cosmological Constant

Gauge mediation: traditional objection: c.c. requires large
constant in W , unrelated to anything else.
Retrofitted models: scales consistent with our requirements for
canceling c.c. Makes retrofitting, or something like it, inevitable
in gauge mediation.
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Other small mass parameters: m, µ-term, arise from dynamical
breaking of discrete R symmetry. E.g.

Wµ =
S2

Mp
HUHD. (103)

Readily build realistic models of gauge mediation/dynamical
supersymmetry breaking with all scales dynamical, no µ
problem, and prediction of a large tanβ.
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RETHINKING NATURALNESS
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Sources of Pessimism – and Optimism

Already with the end of the LEP program, there were serious
reasons for skepticism about supersymmetry The most natural
scale for low energy supersymmetry would seem to be MZ . The
absence of any direct signal, the failure to discover the Higgs,
the problem of CP violation, the absence of deviations from the
Standard Model in b → s + γ, the non-observation of proton
decay, all suggested that supersymmetry, if present, was
working hard to hide itself.

The absence of a natural explanation for the observed dark
energy, and the emergence of the landscape as a plausible
concept, sharpened these concerns.
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In the last year, these concerns have been sharpened. The
LHC has quickly excluded broad swaths of the SUSY
parameter space; near TeV limits are common.

As Michael Peskin said in Mumbai, “No reasonable person
could view [the SUSY exclusions] without concluding that we
need to change our perspective." He added the question:
“What new perspective is called for?"

I am certainly no wiser than Michael, so I won’t claim to have
any answer he doesn’t. But I hope to provide some guidance
for thinking about these issues.
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Naturalness: three logical possibilities

Assuming that supersymmetry exists at some scale well below
the Planck scale:

1 Conventional ideas are correct. Within some class of
models, the weak scale arises without appreciable fine
tuning of parameters.

2 There is some modest level of fine tuning. We will discover
– or just fail to discover – supersymmetry, more or less in
some form we imagined, with fine tuning of, say, a part in
1000.

3 There is lots of tuning. We will see a relatively light Higgs.
Nothing else.
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What is naturalness? Should we believe in it?

Why would we doubt?

Hierarchies in nature for which we have possible symmetry or
dynamical explanations:

1 Weak/Planck hierarchy
2 Yukawa hierarchies

Hierarchies for which we don’t:
1 The cosmological constant (huge elephant) (part in

1068 − 10120).
2 Inflation (part in 100?)
3 Hypothetical: θqcd → axion – fa/Mp

4 Hypothetical: dark matter (see (3), or new light state tuned
for thermal production).
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All of these problems are substantially ameliorated by
supersymmetry, but the first two are not resolved in any
framework I know.
So logically we have to acknowledge, even before proposing an
underlying explanation for these puzzles, that in imposing
notions of naturalness we are on shaky grounds.
SUSY, of course, has other attractive features:

1 Unification
2 Dark matter

I will try to convince you that there are more.
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The Landscape As a Setting for Questions of
Naturalness

The landscape has been the Damocles sword hanging over our
(SUSY’s) head. It is, for better or worse, the most compelling
explanation we have of the observed dark energy.

Without worrying how the landscape comes about, can embody
the basic idea in the statement:

The laws of nature we observe (degrees of freedom, lagrangian
parameters) are selected from a large ensemble of possibilities.

The probability distribution associated with this ensemble
depends on the underlying microphysics (string theory? some
larger structure incorporating gravity?), cosmology, other
unknown features.
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Higgs mass in a Landscape Setting

Ignoring tuning, we might expect the Higgs coupling at the high
scale to be large, if selected from a distribution (λ = π2?). Then
evolve down. If Higgs parameters are selected anthropically,
then certainly must be large enough that the universe has not
already decayed. Leaves an interesting band:
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Model Building in a Landscape Setting

From this perspective, a model is a choice of probability
distribution for d.o.f, symmetries, parameters. In making a
selection from the distribution, we impose certain prior
constraints; these may be anthropic (as in the prediction of the
dark energy) or simply viewed as observational. Predictions
arise if some outcome is strongly favored.

Models can fail! [“Falsifiable"]
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Within such a framework, naturalness is a precise notion. We
can ask the relative likelihood, say, of a light Higgs given
supersymmetry or not.

Question of low energy susy is, then, how common, in the
landscape, is dynamical susy breaking, vs. non-dynamical or
total absence of supersymmetry.

The answer to this question is not known within, e.g., any
well-understood string model.
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Models and Their Implications for Low Energy
Supersymmetry

Model A No SUSY below Planck scale (would seem generic). Low
Higgs mass selected by anthropic criteria.

Model B: Assume (motivated by studies of IIB flux vacua)
non-dynamical breaking of supersymmetry, superpotential
parameters distributed uniformly as complex numbers: high (Planck)
scale susy favored even by small Higgs mass, cosmological constant.
(Douglas/Susskind)

Model C: Dynamical breaking favors lower breaking of SUSY
(Gorbatov, Thomas, M.D.).

Model D: Dynamical breaking and discrete R symmetries: very low
scales (as in gauge mediation).
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So in landscape, question of low energy susy is one of relative
probability of dynamical susy vs. non-susy or non-dynamical
susy.

Not enough known about landscapes from any underlying
theory to settle these questions from “top down".
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A cosmological argument for low scale susy in the
landscape:

One attempt at a “top down" argument:
The prototypical flux landscape models generate a large class of
effective actions, and one counts vacua by counting stationary points.
Typically these will be non-supersymmetric or exhibit large
supersymmetry breaking. But a typical low cosmological constant
state found this way will have many neighbors with negative
cosmological constant. Typically decay will be very rapid.

Large volume, weak coupling typically are not sufficient to account for
generic stability. But Supersymmetry is!

For a broad class of models (Festuccia, Morisse, M.D.):

Γ ∝ e
−2π2

(
M2

p
m2

3/2

)
(104)
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A related question: Does one expect symmetries (pointing to
low scale breaking, as needed to suppress proton decay, etc.?).
Naive landscape counting in flux models: no! Only an
exponentially small fraction of fluxes allow symmetry (Z. Sun,
M.D.).

Challenges accepted wisdom that symmetries are natural.

But perhaps too naive. (Festuccia, Morisse, M.D.)
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A Little Hierarchy?

In such a framework, notions of naturalness, we see, can hold.
If there is low energy susy, might one still encounter a little
hierarchy, or do strict notions of naturalness hold?
E.g. inflation, with SUSY, typically requires 1/100 fine tuning.
Without SUSY generally much more severe. If the dynamics of
inflation are tied to those of supersymmetry breaking, there
might be a tension between the two (higher scales more natural
for inflation, lower scales for Higgs mass). The result could be a
“compromise". Dark matter might also lead to such a tension.

Models relating supersymmetry to inflation can give little or
“medium size" hierarchies.
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