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Abstract

Ž .We consider supersymmetry breaking in theories with gaugino condensation in the presence of an anomalous U 1
symmetry with anomaly cancellation by the Green–Schwarz mechanism. In these models, a Fayet–Iliopoulos D-term can
give important contributions to the soft supersymmetry-breaking scalar masses. Most discussions of this possibility have
ignored the dilaton field. We argue that this is not appropriate in general, and show that the F-term contributions to the soft
breaking terms are comparable to or much larger than the D-term contributions, depending on how the dilaton is stabilized.
We discuss phenomenological implications of these results. q 1998 Published by Elsevier Science B.V. All rights reserved.

When considering supersymmetry breaking, one of the most serious issues is understanding the flavor
structure of the soft supersymmetry breaking mass terms. There are several proposals to explain how a structure
consistent with known facts about flavor violation might arise:

1. UniÕersal soft scalar masses at some high energy scale. In the context of, say, a supergravity theory, such
a proposal is a convenient starting point for phenomenology but is not, by itself, natural. It corresponds to
arbitrarily imposing a relation among a very large number of parameters.

2. Dilaton domination. In string theory, if the F term of the dilaton is the principle source of supersymmetry
breaking, this leads to universal soft masses, provided one assumes that the Kahler potential for the dilaton is¨
well-approximated by its weak coupling form. However, it is hard to understand how the dilaton potential can
be stabilized unless there are large corrections to the Kahler potential.¨

3. FlaÕor symmetries. It is possible that approximate flavor symmetries can give squark and slepton
degeneracy or alignment, while permitting the observed flavor violations among the fermions.

4. Low energy, gauge mediated supersymmetry breaking. In such schemes, gauge interactions serve as the
principle messengers of supersymmetry breaking. Soft breaking masses are functions of gauge quantum
numbers, providing adequate degeneracy to suppress flavor changing processes.
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The focus of this letter is a fifth suggestion:
5. Fayet–Iliopoulos D-term breaking as the source of soft scalar masses. This possibility has been widely

w x w x Ž .discussed in the literature. As proposed in 1 and 2 , this idea relies on the existence of a U 1 gaugeX

symmetry with anomaly cancellation implemented by a non-trivial transformation of the dilaton according to the
w x Ž .Green–Schwarz mechanism 3 . After supersymmetry breaking and spontaneous breaking of U 1 , theX

Ž . Ž .corresponding D-term obtains a vacuum expectation value VEV . Light fields carry a U 1 charge, so theX

D-term VEV contributes to the soft squared masses of the squarks, sleptons and Higgs bosons of the Minimal
Ž . Ž .Supersymmetric Standard Model MSSM . If all of the squarks and sleptons carry the same U 1 charge, thisX

can lead to flavor-independent contributions to soft breakings. Alternatively, it might lead to interesting patterns
Ž .of alignment, if the Yukawa couplings are correlated with the U 1 charges in just the right way. These
w xpossibilities have been explored in recent model-building, including 4–11 .

ŽThis last proposal seems quite exciting. It seems to relate a very microscopic phenomenon the generation of
.a Fayet–Iliopoulos D-term through the Green–Schwarz mechanism in a quite well-defined and controllable

way to measurable properties of the low energy theory. But upon further consideration, the suggestion raises
several puzzles.

Ž .First, one might wonder why D-terms should appear in the low energy theory, given that the U 1 gaugeX
Ž .symmetry is broken at a very high energy scale one or two orders of magnitude below the Planck scale , well

above the scale of supersymmetry breaking. Indeed, these terms can be understood from a low energy viewpoint
as arising from integrating out the corresponding massive vector supermultiplet. This gives rise to corrections to
the Kahler potential for the light fields, which in turn contribute to the low energy soft breakings. To see this,¨

Ž .consider first a general model with canonical Kahler potential terms for some chiral superfields f with U 1¨ i X

charges q . Then the scalar potential isi

2
E W 1

22 2< <Vs y D yD q f qj , 1Ž .Ý ÝX X i i2 ž /Ef 2 gi Xi i

where W is the superpotential and j 2 is a constant Fayet–Iliopoulos term in the lagrangian before symmetry
breaking. In the low-energy theory there are contributions to the soft masses of the light fields arising from the
expectation value of the D-term:

2 ² :m syq D . 2Ž .f i Xi

To relate this to properties of the light fields, note first that at a stationary point of the potential the VEV of the
D-term is related to the F term VEVs according to

g 2
X 2² : <² : <D sy q F , 3Ž .ÝX i i2MX i

2 2 2 <² : < 2 Ž .2 Ž .where M sg Ý q f is the mass of the U 1 massive supermultiplet; this is easily shown using theX X i i i X

gauge invariance of W. This corresponds to the fact that tree-level exchange of the heavy gauge multiplet gives
a contribution to the low-energy Kahler potential:¨

g 2
X

) i ) jDKsy q q f f f f . 4Ž .i j i j2MX

Ž .Now if we suppose that some of the f ’s have non-zero F components, Eq. 2 again follows.i
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Thinking about the problem in this way makes clear why one might hope that the D term provides the
Ž .dominant contribution to supersymmetry breaking. Since U 1 is broken at scale one or two orders ofX

Ž . Ž .magnitude lower than M , the U 1 gauge boson mass is lighter than the Planck scale and so the controllableP X
2 Ž . 2D contributions to the soft masses ;1rM can dominate over the uncontrollable ;1rM supergravityX X P

contributions.
Ž .This way of thinking about the D term suggests a strategy for model building with U 1 serving as aX

‘‘messenger’’ of supersymmetry breaking. One can consider a theory with a sector which breaks supersymme-
Ž . w x Ž .try, such as the 3,2 model 12 , and gauge a U 1 symmetry. The F terms in the symmetry breaking sector

then give rise to a modification of the Kahler potential for any other fields charged under the symmetry as in Eq.¨
Ž .4 . The resulting pattern of symmetry breaking then depends on the charge assignments of the fields, and can
produce interesting patterns of degeneracy or alignment. Such models, however, suffer from some phenomeno-

Ž . Ž .logical difficulties. Scalars not charged under U 1 which typically include the top squark can only get softX

masses from 1rM effects and are therefore much lighter than the charged scalars. Because there are typicallyP

no low dimension, gauge invariant operators in theories of dynamical supersymmetry breaking, gaugino masses
2 w xtend to be even further suppressed . Apart from the usual fine-tuning problem with heavy scalars 13 , this

w xspectrum also typically drives the top squark squared mass negative at the weak scale 14 .
Ž .In the above scenario, the anomalous U 1 is not in itself involved in the dynamics of supersymmetry

w x Ž .breaking. A more interesting possibility 1,2 has U 1 playing a crucial role in the supersymmetry breakingX

dynamics. Schematically, these models typically include a Standard Model singlet field w, whose VEV and
charge are appropriate to cancel the Fayet–Iliopoulos term. This field couples to some fields charged under a
non-abelian group. Upon integrating out these fields, gaugino condensation in the low energy theory generates a
dynamical superpotential for w. The VEV of w needed to cancel the Fayet–Iliopoulos term is not at a stationary
point of the superpotential, so supersymmetry is claimed to be broken.

Ž .In these models, it is customary to ignore the dilaton essential for anomaly cancellation and assume that it
does not play an important role in supersymmetry breaking. But analyzed in this way, there is a puzzle: a

Ž .massless goldstino does not appear in the spectrum. The U 1 gaugino and the fermionic component of w

acquire a Dirac mass from the Higgs mechanism, and there is no light fermion arising from the non-abelian
dynamics. The absence of a goldstino is clearly connected with the anomaly. To see this, rather than considering
the formal proof of the supersymmetric analog of Goldstone’s theorem, consider instead the explicit realization
of the theorem in weakly coupled theories with a canonical Kahler potential for all of the chiral fields. Then the¨
fermion mass matrix has the form

) i'0 2 g q fX i

2E WM s 5Ž .fermion
) j'2 g q fX j� 0Ef Efi j

Ž .in the gaugino, chiral fermion basis with canonical kinetic terms. Using the extremization condition for the
'Ž² : ² :.scalar potential E VrEf s0, one finds that this matrix annihilates the eigenvector D r 2 , g Fi X X i

corresponding to the goldstino wavefunction, but only if the superpotential is gauge invariant.

2 An exception occurs in models with singlets. However, in all such models, it is necessary to prohibit some couplings. This can only be
done naturally by imposing symmetries, which invariably suppress gaugino masses.
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This immediately resolves the puzzle of the missing goldstino in these models. In these theories, the
superpotential W is generally not gauge invariant unless one maintains its explicit dependence on the dilaton

Ž . X Xchiral superfield S, which transforms under a U 1 gauge transformation, A ™A qE a , according toX m m m

dGS
S™Sq i a , 6Ž .

2
with

1
d s q . 7Ž .ÝGS i2192p i

A typical non-perturbative superpotential has the form:

W sf Aeyp Srd GS , 8Ž .np

A Ž .where p is a model-dependent positive number of order 1, and gauge invariance requires that f carries U 1 X

charge pr2. Now it is apparent that in order to properly describe spontaneous supersymmetry breaking with a
massless goldstino, it is mandatory to include S as a dynamical degree of freedom along with the matter fields.

Ž .Indeed, the light degrees of freedom left after supersymmetry breaking and U 1 breaking must include S, andX
Ž .the goldstino is predominantly the dilatino the fermionic component of S . This means that the dilaton F-term,

Ž .F , plays a crucial role in supersymmetry breaking and its contributions to the soft breaking terms in theS

low-energy theory cannot be neglected.
To understand this, one can consider the origin of the D-term in the low-energy theory with the heavy fields

Ž .including fields which transform under the strongly-coupled part of the gauge group integrated out. Consider a
Ž .model which includes a chiral superfield w with U 1 charge y1. In order to be gauge invariant, the Kahler¨X

) Ž .potential for the dilaton must be a function of SqS yd X, where X is the vector superfield for U 1 , soGS X

that

K sey2 Xw )wqK SqS) yd X . 9Ž .Ž .tot GS

Ž .The U 1 D-term can now be written asX

2 2 < < 2D syg j y w , 10Ž .Ž .X X
2 X 2 Ž ) .where j syd K r2)0 is the Fayet–Iliopoulos term and g s2rk SqS with k the Kac–MoodyGS X X X
Ž . < < 2 2level for U 1 . Now, at the minimum of the potential w obtains a VEV which nearly cancels j . To relateX

dGS< <this to the dilaton F-term VEV, one can make a field redefinition, shifting X™Xq ln w and S™Sq lnw2

to obtain the ‘‘unitary gauge’’ version of the Kahler potential:¨
K sey2 X qK SqS) yd X , 11Ž .Ž .tot GS

in which the dependence on the absorbed field w has been eliminated. Now one can integrate out the massive
vector supermultiplet X using its equation of motion

1 XXsy ln yd K . 12Ž . Ž .GS2

Ž .Here and in the following, a prime always means a derivative with respect to S. Taking the D-term component
of both sides yields

dGSX XX2 X X< <D sy F ln K q D ln K , 13Ž . Ž . Ž .X S X2
so that at the minimum of the potential

XXX XX 2 XX y1K K d KGS2² : <² : <D s F y q 1y . 14Ž .X X XX S ž / ž /ž /K K 2 K

² ):Here K is now taken to be a function of the scalar component of SqS . This general formula relates the
Ž .U 1 D-term to the dilaton F-term VEV and the derivatives of the Kahler potential. The latter are constrained,¨X

but not determined, by the requirement that the scalar potential is stable with respect to variations of the dilaton.
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Ž ) .If one were now to naively substitute the weak coupling form of the Kahler potential, Ksyln SqS , into¨
Ž . ² : <² : < 2 ² ):2Eq. 14 , then one might conclude that D sy F r SqS up to small corrections of orderX S
² ):d r2 SqS . This already suggests that the D term is not more important than other contributions to theGS

soft breakings. However, this Kahler potential is only appropriate for large S, but the true vacuum probably lies¨
in a region where weak coupling is not valid. At the true minimum, this estimate may not be correct. For
instance, if the dilaton is stabilized by Kahler potential corrections, the derivatives of K cannot all be close to¨
the weakly coupled prediction. To see this, note that the dilaton-dependent part of the scalar potential includes

< X < 2 XXVs W rK q . . . , 15Ž .np

Ž .where W is of the form given in Eq. 8 . If this term dominates the contributions to the minimization conditionnp

V X s0, then it follows that
p

XX XXXK syK q . . . , 16Ž .
dGS

so that K XX must be parametrically suppressed by one power of d compared to K XXX at the minimum of theGS

potential. Of course if the dilaton is stabilized by corrections to the superpotential, the weak coupling estimate
² : ² : ² :for D given above can be correct, so that D and F are comparable in size.X X S

Despite recent progress in string theory, the mechanism for stabilizing the dilaton – if one exists – is not
w xknown. Various models have been proposed, including specially constructed superpotentials 15 , and Kahler¨

w xpotentials motivated by non-perturbative string theory considerations 16–20 . For illustrative purposes, we also
consider a Kahler potential which has a different structure but which for our present purposes contains the¨
essential features of the latter class of models. Our model is quite simple, with a Kahler potential chosen to have¨
the correct behavior at weak coupling, a small number of parameters, and a minimum of the desired sort. We
take

2 s bq4 s2
0 0

)Ksyln SqS y q , 17Ž . Ž .
) 2

)SqS 6 SqSŽ .
where s and b are non-negative constants. For large S4s , this agrees with the weak coupling result. Now0 0

2
)SqS y2 s qbŽ .0XXK s . 18Ž .4

)SqSŽ .
For b)0, this is positive-definite, as required for sensible kinetic terms. In the limit b™0, it has a zero at

Ž .Sss . Therefore, the scalar potential Eq. 15 diverges at Sss for b™0. In that case it is clear that the0 0

exponentially-falling superpotential pushes S out to a local minimum just less than s . As long as we suppose 3
0

that bQd 2 rp2, there will be a stable local minimum near Sss yd rp. At that minimum, the derivativesGS 0 GS
Ž .of the Kahler potential are given by to leading order in d :¨ GS

1 d 2 dGS GSX XX XXXK sy ; K s ; K sy . 19Ž .2 4 46 s 4 p s 4 ps0 0 0

So we see that K XXX and K XX are both parametrically suppressed, by d and d 2 respectively. To leading orderGS GS

in d , we therefore find thatGS

K XXX 3dGS2 2² : <² : < <² : <D sy F sy F . 20Ž .XX S S3K 2 ps0
XX ² :In the general class of models where the dilaton is stabilized by a near vanishing of K , we conclude that DX

² :is parametrically suppressed by d relative to F .GS S

3 This evidently entails a fine tuning.
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Ž .The Kahler potential of Eq. 17 should provide a useful toy model for dilaton stabilization in contexts other¨
than that considered here. If one supposes that supersymmetry is hierarchically broken, there is an approximate
moduli space, and it is presumably appropriate, even at strong coupling, to write an effective action for the light
fields such as the dilaton. In the present context, however, some of the fields we are including in the effective

Ž Ž . .lagrangian beneath the Planck scale namely the U 1 gauge field approach Planck scale masses at strongX

coupling, and it is not clear that including them incorporates the correct dynamics. However, we believe the
model above gives some qualitative indication of the correct physics, and at any rate, since the dilaton should
ultimately be stabilized at moderate coupling, the gauge multiplet may be light enough to justifiably be included
in the low energy theory.

² :If the dilaton is stabilized by some other means, it is possible to imagine that the suppression of DX
<² : < 2 Ž .compared to F that we have just found does not hold, even though Eq. 16 is satisfied. This could be theS

case for example if K XXX is extremely large at some value of S, corresponding to a sudden change in K XX.
However, the nicest thing one can say about such a possibility is that it is not particularly appealing. As already
mentioned, it is also possible to imagine that an unspecified superpotential effect stabilizes S. Even in that case,

Ž . ² : ² :however, Eq. 14 implies that F is at least comparable to D .S X

It is instructive to consider how the preceding discussion is realized in a concrete example, treating the
gaugino condensation in the microscopic theory explicitly. We will consider the model proposed by Binetruy´

w x Ž .and Dudas in 1 , with gaugino condensation from a gauged SU N symmetry, and taking N s1 forc f
Ž . Ž .simplicity. In addition to the SU N -singlet field w with U 1 charge y1, there are chiral superfields Q andc X

Ž . Ž . Ž . Ž .Q transforming under SU N =U 1 as N ,q and N ,q respectively. It is convenient to minimize thec X c c
1r2Ž . Ž .potential along the SU N -flat direction using the canonically normalized meson superfield ts 2QQ , soc

) 2 q X 2 q X ) y2 X )Ž . Ž .that the Kahler potential is t t e qe r2qw w e qK SqS yd X . Then the scalar potential is¨ GS

given by

2 2E W E W 1
2XX 2< <VsK F q q q D , 21Ž .S X2Ew E t 2 gX

where F syW X )rK XX andS

qqq
2 22 2< < < <D syg t y w qj . 22Ž .X X ž /2

The gauge-invariant superpotential is given by

1
qqq2 3 N y1ct w 2 L N y1c

Wsm q N y1 , 23Ž . Ž .c 2ž / ž /2 M tP

w x Ž .where the last term is the ADS superpotential 12 and corresponds to W in Eq. 8 . The dynamical scale Lnp

depends on the dilaton field according to

3 N y1cL 2y8p k S y2Žqqq .SrdN GSse se , 24Ž .ž /MP

Ž .where k is the Kac–Moody level of the SU N gauge group. The difference between the present treatmentN c
w x XX < < 2 Ž .and 1 is that we will include the effects of the first term K F in the scalar potential Eq. 21 .S
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Now we can search for a local minimum of the scalar potential with respect to variations of t and w, in the
² : w xneighborhood of w sj . Following 1 , we can define convenient parameters

3 N y1 N y1c cqqq
j L jN Nc cm'm ; es , 25Ž .ˆ ž /ž /ž /M j m̂P

with e<1. Then the location of the minimum and the auxiliary field VEVs can be determined as an expansion
in e . One finds a local minimum at

2 2² :w sj 1qe qqq q . . . , 26Ž . Ž .
XN y1 2 Kc22 2² :t s2ej 1qe qqq 1y2 N y q . . . . 27Ž . Ž .XXc2 ž /d K2 N GSc

At this minimum,
Xqqq 2 KŽ .22 2² :D se m qqq 1y 1y , 28Ž . Ž .ˆ XXX ž /N d Kc GS

K X

² :F se m qqq , 29Ž . Ž .ˆ XXS K

Žto the lowest non-trivial order in e . The F-terms for t and w also obtain VEVs, but they have a much smaller
. Ž . Ž .effect on the soft masses of the fields in the low-energy theory. The terms in Eqs. 26 – 28 which do not

XX w xexplicitly involve K are the ones computed in 1 . However, they are actually suppressed compared to the
XX < < 2terms which arise from including the K F term in the potential, at least for models where the dilaton isS

stabilized as described above.
Ž . Ž .Using Eqs. 28 and 29 , it is now possible to compare the dominant sources of supersymmetry breaking:

XX XX XX 22 qqq K d K KŽ . GS2² : <² : <D r F s 1y q . 30Ž .X X XX S ž / ž /N d K 2 K Kc GS

Ž . XXXAt first sight, this does not seem to agree with Eq. 14 , since it does not even involve K . However, this is
merely because we have not yet used the minimization condition for the dilaton, which in this model can be
written as

XXX XX XX XX2 3K 2 qqq K d K d KŽ . GS GS
sy 1y q 31Ž .X X X Xž / ž /K N d K 2 K 2 Kc GS

Ž . Ž .to leading order in e . Using this one can show that Eq. 30 is precisely equivalent to Eq. 14 . In particular, the
Ž . ² :d in the denominator of the RHS of Eq. 30 does not necessarily imply any enhancement of D ; forGS X

example, in the model of dilaton stabilization we discussed above, K XX is expected to be parametrically
suppressed by d 2 .GS

As we discussed earlier, it is also possible to understand the presence of the D-term in the low energy theory
Ž .as arising from integrating out the massive U 1 vector supermultiplet. In a general model with canonicallyX

normalized matter fields and a dilaton, a similar argument to the one described earlier reveals that

g 2 d dX GS GS2 2 2XXX² : <² : < <² : < ² :D s K F y q F y k D , 32Ž .ÝX S i i X X2 ž /2 8MX i

2 2 Ž 2 <² : < 2 2 XX .where now M sg Ý q f qd K r4 . In the model at hand with f sw,t, this can be checked to beX X i i i GS i
Ž . Ž .in precise agreement with Eqs. 14 and 30 , to the lowest non-trivial order in e , by plugging in the VEVs and

Ž .using Eq. 31 .
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It is also easy to understand the emergence of the dilatino as the goldstino in the microscopic picture. For a
Ž .general theory with a Green-Schwarz U 1 symmetry and chiral superfields f with canonical Kahler potential¨X i

terms, the fermion mass matrix is given by

g k D° ¶X X XXX XXX2 ) )' 'k g W r2 K 2 g q f yd KX X X i i GSXXž /' '2 2 K
X2E W 1 E W

)'2 g q fM s 33Ž .X j j XXfermion 'Ef Ef Efki j j

X XX XXX Xg k D 1 E W W K WX X X XX'yd K yXXGS XXXX XX 2¢ ßž /' ' ' Ef K K2 2 K K i

Ž .in the canonically-normalized gaugino, chiral fermion, dilatino basis. The goldstino wavefunction in this basis
is proportional to

² :DX XX˜ '² : ² :Gs , F , K F . 34Ž .i sž /'2 gX

˜The first row of M annihilates G by virtue of the gauge invariance conditionfermion

E W dGS Xq f y W s0 , 35Ž .Ý i i Ef 2ii

˜ Xwhile the second and third rows annihilate G by the minimization conditions E VrEf s0 and V s0i

respectively. Now, we can specialize to the model studied above. Looking only at the lowest order contributions
XX'Ž .in e , one finds that in the basis l rg , c , c , c r K , the goldstino wavefunction is proportional toX X t w S

XX X 'Ž . Ž .'0,0, K rK ,1 . The zeros actually correspond to terms suppressed by e and e . So in the scenario for
dilaton stabilization discussed above, the goldstino is mainly dilatino with a small admixture of the fermionic
component of w.

In the preceding discussion we have been using a global supersymmetry picture. Including supergravity
effects causes the gravitino to obtain a mass by absorbing the goldstino, but does not alter the essential features
of the supersymmetry breaking pattern. In particular, including the minimal supergravity terms in the scalar

² : <² : < 2potential does not affect the ratio D r F to leading order in d .X S GS

Let us conclude by noting some phenomenological implications of this analysis. Previously, it was thought
Ž .that models of dynamical supersymmetry breaking in the presence of an anomalous U 1 featured very small

gaugino masses and scalar squared masses dominated by the D-term VEV. However, the picture that now
w xemerges is similar to that of a moduli-dominated scenario 21 , but with small D-term corrections. In the theory
Ž w x.below M , assuming a canonical gauge kinetic function for a possible rationale for this, see 17 the MSSMX

gauginos will obtain masses

² :FS
m s . 36Ž .l

)² :SqS

Ž .Each of the MSSM scalars with U 1 charge q receivesX i

1 XX 22 <² : < ² :m s K F yq D q . . . , 37Ž .f S i X3i

where the first term represents the usual minimal contribution of the F-term of the dilaton, the second is the
Ž .anomalous U 1 contribution, and the ellipses refer to other contributions to the soft masses coming fromX
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higher order Kahler potential couplings between f and S, and from contributions due to F-terms of other¨ i

moduli. It is important to remember that such contributions can be comparable to the terms shown explicitly,
Ž . Ž .and need not have any special flavor structure. It follows from Eqs. 28 and 29 that the contributions to the

² : ² :soft masses from F and D are both proportional to e m, and so can be made comparable to theˆS X
² :electroweak scale by a natural choice of the dynamical scale L. Note that D turns out to be negative in ourX

conventions, so that the D-term contributions to MSSM scalar squared masses are positive for q )0. We havei

found that the D-term contributions to scalar masses are likely to be parametrically suppressed by d comparedGS
Ž ² : .to the F-term contributions to the gaugino masses note that S is typically of order 2 or so in models where

the dilaton is stabilized by large corrections to K. If the F-term contribution to the scalars are suppressed, it is
possible that the D-term contributions dominate the tree-level scalar masses. However, renormalization group

Ž .2 2running yields large flavor-independent positive contributions to the scalar mass proportional to m , so thatl

the physical masses of squarks and sleptons are again not dominated by the D term.
Ž .Since D is not the dominant source of supersymmetry breaking, we cannot use the anomalous U 1 as aX

controllable handle on the soft masses. If these theories are to have any hope of being realistic, we must assume
Ž . Ž .that a none of the other moduli acquire large F-component VEVs and b the contributions to scalar masses

² :due to F /0 are flavor-blind. Even with these assumptions, it is a quite model-dependent question whetherS
Ž .these theories can be consistent with present phenomenological constraints on flavor violation. If the U 1 X

w x ² :charges are family-independent, as in the models in 5,11 , then we expect that the D contributions areX

harmless for flavor-violation even though they are not universal; this makes them particularly interesting for
Žfuture sparticle spectroscopy. Of course, other family-dependent D-terms present in such models might very

. Ž .well still be dangerous. On the other hand, in models where the U 1 symmetry is family-independent, there isX

a quite serious flavor-violation problem unless the D-term contributions to the down squark and slepton squared
masses happen to be aligned with the corresponding fermion Yukawa couplings. The presence of larger
universal F -term contributions may well ameliorate this problem, and a rough estimate shows that the relativeS

suppression of the D-term contributions ;d ;10y2 –10y3 may just be sufficient to explain the absence ofGS
Ž .flavor-changing neutral currents for 1 TeV squarks .

If low energy supersymmetry does have something to do with nature, the flavor problem is surely an
important clue as to how supersymmetry is broken. If the breaking is at a high scale, one might have hoped that

Ž . Ž .D-term breaking with an anomalous U 1 could help resolve this problem. In theories where the U 1 merely
serves as a ‘‘messenger’’ of supersymmetry breaking, this could indeed happen, although the gaugino masses

Ž .tend to be very light and the sfermion spectrum has fine-tuning problems. In theories where the anomalous U 1
dynamics is involved in supersymmetry breaking, we have learned that contrary to the naive expectation, the
D-term contributions to soft terms in the low energy theory do not, in fact, dominate over Planck scale
contributions. Therefore theories of this sort are still subject to potentially dangerous flavor-violating effects

Ž .from non-minimal contributions to the Kahler potential which involve both S and the moduli and the light¨
Ž .fields. If we assume that such large flavor-violations are absent, however, anomalous U 1 theories can still be

useful for generating the fermion mass hierarchy while evading flavor-changing constraints. There is another
positive aspect of our observations. It is usually asserted that in these models the gauginos tend to be very light;
this is now seen to be not the case.

In the introduction, we listed five mechanisms for resolving the flavor problems of supersymmetric theories.
In this paper we have asked in what sense the fifth, supersymmetry breaking through D-terms, is special. We

Ž .have argued that one should think about this mechanism by integrating out the massive vector field s . If the
mechanism is to be effective, it is crucial that the resulting terms dominate, i.e. that the vector masses be small

Ž .compared to, e.g. the Planck or string scale. In such a case, soft breaking masses will be controlled by the U 1
charges of the fields – this is the real significance of D term breaking. But we have seen that in theories where
the dilaton plays the dominant role in supersymmetry breaking, the couplings of the dilaton to the vector fields

Ž . Ž .are suppressed. In theories such as the 3,2 model, when coupled to the U 1 , the D term can dominate the
scalar soft breakings, but gaugino masses and the m term will be difficult to explain.
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