Physics 101B. Introductory Modern Physics. Professor Dine

Winter, 2005. Homework Set 7. Due Fri., March. 11.

We are approaching the end. You have a lot of time for this problem set, but you also have a lot of reading to do. Read chapter 11 (all of it) carefully. In chapter 12, you can skip 12-1 if you like, but read 12-2 and 12-3. You'll need to read all of chapter 13. Problem numbers refer to your textbook.

- 1. 11-8
- 2. 11-9
- 3. 11-15
- 4. 11-35
- 5. 11-47
- 6. 12-36
- 7. 13-2
- 8. 13-8
- 9. 13-14
- 10. 13-47
- 11. The mass of the Z particle is about 91 ${\rm GeV}/c^2$ (1 ${\rm GeV}=10^9~{\rm eV}$). Assuming that the weak force arises through exchanges of this particle, what is the range of the weak force (compare the exchange of pi mesons, pp. 545-547.
- 12. Despite extensive searches, there is no evidence for large quantities of antimatter in the universe. This means that there are protons, neutrons, but not many anti-protons or antineutrons. What does this say about the baryon number of the universe? If one is to understand this fact, what conservation laws might one have to give up?