
Physics 101B. Modern Physics. Professor Dine

Matrix Mechanics and Band Structure

1 Matrix Mechanics

Heisenberg and Schrodinger, nearly simultaneously, proposed two, alternative formulations of quan-
tum mechanics. Shortly afterwards, Dirac showed that these were equivalent, and gave a unified
way to understand them.

We can use Heisenberg’s matrix mechanics to understand, in a simple way, why the energy
levels of crystals form bands. Matrix mechanics also illustrates some important features of quantum
mechanics which we have not discussed up to now.

Heisenberg wanted to avoid discussing classical concepts, like position, and to formulate quan-
tum theory in terms of objects which can be measured. In Heisenberg’s picture in quantum me-
chanics, there are states, i = 1, . . . N , where N may be large or infinite. For example, for the
hydrogen atoms, i might denote the states of different n, `,m and ms, i.e. the states would be
infinite. Measurable quantities, called “observables” are represented by matrices acting on these
states. These matrices have eigenvectors and eigenvalues:

OVn = λnVn (1)

The result of any measurement of O is one of its eigenvalues, λn; after the measurement, the system
is left in one of the eigenstates, Vn. Probably the most important observables is the energy; the
corresponding matrix is the Hamiltonian matrix, H.

This is all rather abstract, and the idea of dealing with infinite dimensional matrices rather
daunting, so let’s look at something simpler – and very important – spin 1/2. In this case, there
are just two basic states, spin up and spin down. We can represent these by the vectors:

ψ+ =

(

1
0

)

ψ− =

(

0
1

)

(2)

The matrix corresponding to Sz is then then very simple:

Sz =
h̄

2

(

1 0
0 −1

)

. (3)

The eigenvectors are just ψ+andψ−, with eigenvalues ±h̄/2.
Now suppose we have a magnetic field in the z direction. Then the energy is H = µBBSz,

where µB is the Bohr magneton. So as a matrix,

H =
h̄µBB

2

(

1 0
0 −1

)

. (4)

The energy eigenstates are again ψ+andψ−, with eigenvalues ± h̄µBB
2

.
Heisenberg was very interested in how the states depend on time. His version of the Schrodinger

equation (which is usually called the Schrodinger equation) is:

ih̄
∂V

∂t
= HV (5)



For an energy eigenstate, HV = EV , this is easy to solve:

V (t) = e−iEt/h̄V (0) (6)

where V (0) is the vector at time t = 0. Note the similarity to the time-dependent solutions of the
Schrodinger equation you studied in chapter 6.

The Schrodinger equation is a linear equation, so any linear combination of solutions is a
solution. E.g. if we have eigenvectors V1 and V2 with energy eigenvalues E1 and E2,

V (t) = a e−iE1t/h̄V1 + b e−iE2t/h̄V2 (7)

is also a solution.

2 Oscillations

As an example, suppose we have a Stern-Gerlach apparatus which prepares a beam of electrons
with spin up in the z direction. Now we pass the beam through a magnetic field in the x direction.
The Hamiltonian is now

H = BµSx (8)

Claim:

Sx =
h̄

2

(

0 1
1 0

)

(9)

One check on this is to construct the eigenvectors and eigenvalues of this matrix.
Exercise: Check that

ψ+ =
1√
2

(

1
1

)

ψ− =
1√
2

(

1
−1

)

(10)

are eigenvectors of this matrix. What are their eigenvalues?
Now, the general solution of the Schrodinger equation is:

V (t) = a e−iE+t/h̄ψ+ + b e−iE
−

/h̄ψ− (11)

with E± = ± h̄µB
2
.

Exercise: verify this.

At t = 0, V =

(

1
0

)

. So if we take a = b = 1√
2
, we have:

V (t) =

(

cos(ωt)
i sin(ωt)

)

. (12)

So the system oscillates between spin up and spin down. This sort of oscillation, between two
states, is a common phenomenon in quantum mechanics. It has recently been discovered to take
place among different types of neutrinos. Other examples are described in the attached handout
from the Feynman lectures.

3 Band Structure

The matrix formulation provides a way of understanding the spectra of solids. Consider a system
with a periodic potential (for simplicity, we will consider one dimension; you can generalize the
argument to two or three dimensions). If the individual wells are reasonably deep, one can solve
first the problem of an electron in each well. Call the ground state energy in each well Eo. However,
there will be a non-zero amplitude (probability is the square of the amplitude) to tunnel from one



well to another. If this is small, the probability to tunnel in one step between two wells will be
small. Call the amplitude to go from one well to another ε (strictly speaking, ε is an amplitude
per unit time). What is the structure of the Hamiltonian for this system? If ε were zero, the
Hamiltonian would just be diagonal, if we took the states to be the ground states in each well. In
other words, as a matrix, it would look like:

H = diag(Eo, Eo, Eo, . . .). (13)

But now there are off-diagonal terms, equal to ε, corresponding to the fact that the system will not
remain for all time in the ground state. So the Hamiltonian matrix is more complicated:

H =









E0 ε 0 0 0 0 . . .
ε Eo ε 0 0 0 . . .
0 ε Eo ε 0 0 . . .
0 0 ε Eo ε 0 . . .









(14)

Now we make a guess for the vector which diagonalizes this matrix:

V =















eiθ

e2iθ

e3iθ

e4iθ

. . .















. (15)

If you plug in, you’ll find:

HV =















∗∗
(Eo + ε(eiθ + e−iθ))e2iθ

(Eo + ε(eiθ + e−iθ))e3iθ

(Eo + ε(eiθ + e−iθ))e4iθ

. . .















(16)

Here the first entry indicates that this one doesn’t work quite so nicely; but imagine that V has
1023 entries.
Exercise (for the brave): Verify this equation.

So, for any value of θ, V is an eigenvector of H with eigenvalue:

E = Eo + ε cos(θ) (17)

In what sense do these vectors correspond to plane waves? Calling the lattice spacing a, then
x = na, where n is the row of the vector V . So the n’th entry in the vector is

Vn = einθ = eix
θ

a = eikx k =
θ

a
. (18)

So the energy eigenvalues depend on k as

ε cos(ka). (19)

Note that because 0 < θ < 2π

0 < k <
2π

a
. (20)

This is the promised band structure.
Finally, note that for k near zero, we can make a Taylor series expansion of the cosine:

E = Eo + ε+
|ε|
2h̄2

p2 (21)



This is the equation for the kinetic energy of a particle of mass m∗ = h̄2

|ε| . This is known as the

“effective mass”. It is typically of order 1/20. (The astute reader may note that we should really
do this for states at the top of the band).

Real band calculations are complicated. There are more dimensions and more states in each
well. But this little calculation makes clear why band structure forms.


