
Physics 101B. Modern Physics. Professor Dine

Momentum Wave Functions – Plane Waves

This is really a supplement to chapter six of your text. We especially want to

understand section 6-4, particularly equations 6-48 and 6-49.

1 Plane Waves and Wave Packets

The problem of a particle in an infinite square well is easy to solve, but sines and cosines are a
bit awkward to work with. It is easier to consider, instead, a particle subject to a different sort of
boundary condition.

Start in one dimension. Then the periodic boundary condition is:

ψ(x+ L) = ψ(x). (1)

The Schrodinger equation is:

− h̄2

2m

d2

dx2
ψ(x) = Eψ(x) (2)

Calling E = p2

2m , this has the solution:

ψp = e
ipx

h̄ (3)

The periodicity requirement is the requirement that pL = 2πnh̄.
Now in quantum mechanics, the operator p̂ = −ih̄ d

dx . So ψp satisfies:

p̂ψ(x) = −ih̄ d
dx
ψ = pψ (4)

so ψ is an eigenfunction of the momentum with eigenvalue p, as well as an eigenfunction of the

energy with eigenvalue p2

2m .
Before going to three dimensions, let’s ask what is the typical value of n if E = 1 KeV and

L = 1 meter. From our formulas,

E =
2π2h̄2n2

2mL2
(5)

and solving for n, n ≈ 1010. So in practice, the spacing between states of different n is too small
to measure. A real wave function for a particle in a box like this will be a sum (superposition) of
states of different p. Since the n’s are so large, we can replace the sum by an integral, and write:

Ψ(x) =

∫
dpφ(p)eipx/h̄e−i p2

2m
t/h̄. (6)

As an exercise (you don’t have to hand this in) you can check that ψ(x) satisfies the time-
dependent Schrodinger equation:

− h̄2

2m

∂2

∂x2
Ψ(x) = i

∂

∂t
Ψ(x, t). (7)

Now what’s interesting here is that, just as |ψ(x)|2 is the probability of finding the particle at
a point x, so |φ|2 is the probability of finding the particle with momentum p.



The average value of many measurements of x is:

< x >=

∫
dx|Ψ|2x (8)

and of many measurements of p is:

< p >=

∫
dp|φ|2p (9)

It is a theorem about Fourier transforms that the spread in the wave numbers (k = p/h̄) is related
to the spread in space by

∆k∆x ≥ 1 (10)

or ∆p∆x ≥ h̄. This is the Heisenberg uncertainty principle. Note that for a pure plane wave, i.e.
a state of definite momentum, the chance of finding the particle anywhere in space is a constant –
there is no knowledge of the position.

A further fact about functions like this: as time passes, they move with speed <p>
m . They also

spread out as time goes by.
In class, we generalized this to three dimensions. For a periodic box:

ψ~p = ei~p·~x. (11)

Periodicity requires:
~p = 2π(nx, ny, nz) = 2π~n (12)

ψ~p is an eigenfunction of the operator ~̂p = −ih̄~∇ with eigenvalue ~p (since the momentum is a vector,
there are really three operators with three different eigenvalues).

2 The Momentum Space Wave Function

Here we’ll work in one dimension to keep things simple. The same ideas all carry over to three
dimensions. Just as it doesn’t make much sense in quantum mechanics to speak of a particle at
a particular position, x, so we have just learned that it doesn’t make much sense to speak of a
particle of a definite momentum. Instead, we have just seen that a natural wave function for a
particle moving in a big box is:

ψ(x, t) =
∑
n

1√
L
eipx/h̄φ(p)e−i p2

2mh̄
t (13)

where p = 2πnh̄
` = h̄k (note that this is the de Broglie relation). Now φ(p), like ψ, has all the

information we want about the particle. We can call this the momentum wave function. If φ(p) is
a very narrow function of p, say peaked about po, we would guess that the most likely values of the
momenta we would measure are around po. So we will guess, or postulate, that the probability of
finding a particle with momentum p+ dp is

P (p)dp = |φ(p)|2dp. (14)

. This is just like P (x) = |ψ(x)|2.
The average value of p is:

< p >=
∑
n

|φ(p)|2p (15)

But now note that this is the same thing as:

∫
dxψ∗(x, t) − ih̄

∂

∂x
ψ(x, t) (16)



=
∑
n

∑
n′

∫ L

o
dx

1

L
φ∗(p)e−ipx/h̄peip

′x/h̄φ∗(p′) (17)

=
∑
n

p|φ(p)|2 (18)

This is eqn. 6-48. The equation immediately below can be derived in the same way.
Suppose the wave function is a very peaked function of x, near some point xo. Then < x >= xo.

A measure of how peaked the function is can be provided by the quantity

(∆x)2 =< x2 > − < x >2 . (19)

The more sharply peaked, the smaller this quantity will be. Similarly, one can define ∆p. The
Hesisenberg uncertainty principle, in this form, is a theorem about Fourier transforms. This theorem
is important for any wave motion, e.g. for visible light. It says that the product of the spread in
wave numbers (inverse wavelengths) and coordinates satisfies

∆x∆k > 1. (20)

In terms of ∆p, this is the Heisenberg uncertainty relation, which we introduced earlier.


