
Physics 105. Mechanics. Professor Dine

Fall, 2005. Handout: The Kepler Problem

These notes are meant as a supplement to the materials in chapter 6 and 7 of your

textbook.

1 The Kepler Problem

It is possible to solve the motion completely as a function of time. But for many purposes, we just
want to know the shape of the orbits. In other words, we want to know r(θ) or θ(r). It is easiest
to get θ(r). Start with

E =
1

2
µṙ2 + Veff (1)

where

Veff = −k

r
+

`2

2µr2
. (2)

dθ

dr
=

θ̇

ṙ
=

`dr

r2

√

2µ(E − Veff )
. (3)

So, for the Kepler problem,

θ =

∫ r dr `
r2

√

2µ(E + k/r − `2

2µr2 )
. (4)

Change variables: u = 1/r. Then:

θ(r) = −
∫

du

(−u2 + bu + c)1/2
(5)

with

b =
2µk

`2
c =

2µE

`2

We can look up this integral in a table, but it is always good to be able to do things from
scratch. Consider:

∫

dx√
ax2 + bx + c

=

∫

dx
√

a(x − x+)(x − x−)
(6)

=

∫

dx
√

a(x − α − β)(x − α + β)

where α = −b
2a ; β =

√

b2−4ac
2a , so we have do do:

∫

dx
√

a((x − α)2 − β2)
=

∫

du
√

a(u2 − β2)
(7)

where u = x − α. Finally, calling u = β cos(θ), we obtain:

∫

dx√
ax2 + bx + c

= − 1√
−a

sin−1(
2au + b√
b2 − 4ac

) (8)



For our problem this gives:

θ(r) = sin−1(
−2

r + 2µk
`2

√

4µ2k2

`4
+ 8µE

`2

) + C (9)

Now we introduce some notation standard in astronomy:

α =
`2

µk
ε =

√

1 +
2E`2

muk2
(10)

α is called the “latus rectum”; ε the eccentricity. Take c = −π
2

(this defines the origin of θ); so

sin(θ + π/2) =
1 − α

r

ε

or
α

r
= 1 + ε cos(θ) (11)

Every high school student knows this is an ellipse! Of course, I am not a high school student,
so I have to do some work. First, a special case: ε = 0 is a circle (r = α). Note that in this case

E = −µk2

2`2
, as expected.

Second, let’s draw the curve, for ε = .2484, .967.

Finally, let’s cast this in the form we all learned in high school. Start with:

α = r + εx

or

r = α − εx.

So, squaring,

x2 + y2 = α2 + ε2x2 − 2αεx

Now we rearrange this a bit, completing the squares:

x2(1 − ε2) − 2αεx + y2 = α2

We can rearrange this as:
(x − xo)

2

a2
+

(y − yo)
2

b2
= α2 1

1 − ε2
(12)

For a general potential, an interesting question is: Are the orbits closed? We can examine ∆θ,
the change in the polar angle in one passage between the turning points, rmin and rmax. In order
that the orbit be closed, it is necessary that ∆θ be a rational multiple of π. From our previous
formulae,

∆θ = 2

∫ rmax

rmin

dr `
r2

√

2µ(E + k
r − `2

2µr2 )
.

This is only a multiple of π for the case of a 1/r and an r2 potential.

Let’s check this for the Kepler problem. It is easiest to work with the variable u. The turning
points correspond to the points where ṙ = 0 in the expression:

E =
1

2
µṙ2 − k

r
+

`2

2µr2
(13)



Multiplying by 2µE
`2

, this gives, at the turning points:

c = − b

r
+

1

r2
(14)

or

au2 + bu + c = 0. (15)

This gives

θ(r+) =
π

2
+ C θ(r−) = −π

2
+ C.

So in one complete revolution, θ changes by 2π.

2 Solution of the Problem by Perturbation Theory

The procedure above is rather opaque. We have the exact solution, but limited insight into what
is going on. We can solve the problem, however, by the methods of perturbation theory. Like the
pendulum, this is a non-linear problem. There we did a perturbation theory in the amplitude of
the oscillation. Here, we know how to solve the problem of circular orbits. We can solve for orbits
which are nearly circular, again, by perturbation theory.

Recall that for a circular orbit,

ro =
L2

µk
. (16)

ro, of course, is constant. For an orbit which is nearly circular, we write:

r(t) = ro + δr(t). (17)

The equation of motion for r is:

r̈(t) = −∂Veff

∂r
= − k

r(t)2
+

L2

2µr(t)3
. (18)

If δr(t) � ro, we can Taylor expand the function on the right hand side of this equation in powers
of δr. Let’s keep the first two terms:

µδ̈r +
d2V

dr2
|r=ro

δr = −1

2

d3V

dr3
|r=ro

δr2. (19)

If we just keep the first term, we have a harmonic oscillator equation for δr,

δ̈r + ω2
oδr = 0. (20)

Here,

ωo =

(

1

µ

d2V

dr2
o

)1/2

=
k2µ

L3
. (21)

We found earlier that the motion is strictly periodic, i.e. both r and θ should have the same period.
We see here that they do;

2π

θ̇
=

2πµr2
o

L
=

2πL3

µk2
, (22)

vs.
2π

ωo
=

2πL3

µk2
. (23)



We can also see that the motion is an ellipse. Note that ro = α, the parameter we introduced
earlier to describe the ellipse. Also note, from θ̇, that

θ =
µk2

L3t
, (24)

so the curve is

r = ro + A cos(
k2µ

L3
t + δ) = α − A cos(θ), (25)

or
α

r
= 1 +

A

ro
cos(θ). (26)

This, we saw, is the equation for an ellipse with ε = A/ro (we are assuming that A, and hence the
eccentricity, is very small).

We can keep going, including the δr2 terms in the equation. When we studied the pendulum,
we saw that the non-linearity had two effects: there is a correction to the frequency, and higher
harmonics appear. The dependence on the frequency depended on on the amplitude, θo. The
non-linear correction here also leads to a change in the frequency (and hence the period). We can
evaluate this as before, and compare with the exact expression for the period, equation 8.46. I’ll
leave the algebra for you. You will want to reexpress the energy in 8.46 in terms of the eccentricity,
8.40. There are also higher harmonics (you may want to think of this graphically, or in terms of
the motion in the r potential).


