
Physics 105. Mechanics. Professor Dine

Fall, 2004. Handout: The Central Field Problem

These notes are meant as a supplement to the materials in chapter 8 of your

textbook.

1 Lagrangian and Hamiltonian in Special Relativity

A guess:

S = −mc
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Note that for small velocities,
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i
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so up to a constant, it is the lagrangian we have used for non-relativistic problems. Using the
Hamiltonian construction, the momenta are:
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The Hamiltonian is:
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2 Pendulum with Lagrange Multipliers

L =
1

2
m(ẋ2 + ẏ2) + mgy − λ(x2 + y2

− `2). (6)

We can solve this by writing: x = ` sin(θ); y = −` cos(θ). But let’s proceed with the lagrange
multipliers. The equations of motion for x and y are:

mẍ + 2λx = 0;mÿ − mg + 2λy = 0. (7)

The variation with respect to λ gives the constraint:

x2 + y2
− `2 = 0. (8)



Differentiating twice gives:
ẍx + ÿy + ẋ2 + ẏ2 = 0. (9)

We can substitute this in the equations for x and y. In particular, if we take the first equation, and
multiply by y, and the second and multiply by x and add, we get:

m(xẍ + yÿ) + 2λ(x2 + y2) + mgy = 0. (10)

Using the constraint equation, we can eliminate the first term, and solve for λ:

λ =
−mgy + m(ẋ2 + ẏ2)

2(x2 + y2)
. (11)

This is, in fact, the tension in the rod. If you subsitute back, e.g., in the x equation, you see the
force Tx.
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mgxy
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i.e. Tx = −T sin(θ) and similarly for y.


