Fall, 2004. Handout: The Central Field Problem

These notes are meant as a supplement to the materials in chapter 8 of your textbook.

1 Lagrangian and Hamiltonian in Special Relativity

A guess:

$$S = -mc \int ds = -mc \int \sqrt{c^2 dt^2 - d\vec{x}^2}$$

$$= \int dt L$$
(1)

$$L = -mc^2 \sqrt{1 - (\frac{1}{c^2} \frac{d\vec{x}}{dt})^2}$$
 (2)

Note that for small velocities,

$$L = -mc^2 + \frac{1}{2}m\dot{x}_i^2 \tag{3}$$

so up to a constant, it is the lagrangian we have used for non-relativistic problems. Using the Hamiltonian construction, the momenta are:

$$p^{i} = \frac{\partial L}{\partial \dot{x}^{i}} = \frac{m\dot{x}^{i}}{\sqrt{1 - v^{2}/c^{2}}} \tag{4}$$

The Hamiltonian is:

$$H = p^{i}\dot{x}^{i} - L$$

$$= \frac{mv^{2} + mc^{2}(1 - \frac{1}{c^{2}}v^{2})}{\sqrt{1 - v^{2}/c^{2}}}$$

$$= \frac{mc^{2}}{\sqrt{1 - v^{2}/c^{2}}}$$
(5)

2 Pendulum with Lagrange Multipliers

$$L = \frac{1}{2}m(\dot{x}^2 + \dot{y}^2) + mgy - \lambda(x^2 + y^2 - \ell^2).$$
 (6)

We can solve this by writing: $x = \ell \sin(\theta)$; $y = -\ell \cos(\theta)$. But let's proceed with the lagrange multipliers. The equations of motion for x and y are:

$$m\ddot{x} + 2\lambda x = 0; m\ddot{y} - mg + 2\lambda y = 0. \tag{7}$$

The variation with respect to λ gives the constraint:

$$x^2 + y^2 - \ell^2 = 0. (8)$$

Differentiating twice gives:

$$\ddot{x}x + \ddot{y}y + \dot{x}^2 + \dot{y}^2 = 0. ag{9}$$

We can substitute this in the equations for x and y. In particular, if we take the first equation, and multiply by y, and the second and multiply by x and add, we get:

$$m(x\ddot{x} + y\ddot{y}) + 2\lambda(x^2 + y^2) + mgy = 0.$$
(10)

Using the constraint equation, we can eliminate the first term, and solve for λ :

$$\lambda = \frac{-mgy + m(\dot{x}^2 + \dot{y}^2)}{2(x^2 + y^2)}. (11)$$

This is, in fact, the tension in the rod. If you substitute back, e.g., in the x equation, you see the force T_x .

$$m\ddot{x} - \frac{mgxy}{x^2 + y^2} + \frac{m(\dot{x}^2 + \dot{y}^2)x}{(x^2 + y^2)}$$
 (12)

i.e. $T_x = -T\sin(\theta)$ and similarly for y.