
Physics 105. Mechanics. Professor Dine

Fall, 2005. Handout: Oscillations

These notes are meant as a supplement to the materials in chapter 3 of your

textbook.

1 Axions: The Dark Matter of the Universe? A Damped Har-

monic Oscillator?

Over the past few years, a great deal of evidence has accumulated that most of the energy density
of the universe is in some form other than protons and neutrons (ordinary matter). It is not known
what this might be. One suggestion is that it is a new kind of particle, known as an “axion.” To
understand how the axion behaves in the early universe, let’s first solve the problem of the damped
harmonic oscillator again, with a small damping. Rather than solve it exactly, we will solve it
approximately, using the idea that the oscillator oscillates, but that the amplitude of oscillation
slowly decreases with time.

Starting with

ẍ + 2βẋ + ω2
ox = 0 (1)

and assuming β � ωo, we look for a solution of the form:

x(t) = f(t) cos(ωot). (2)

Then

ẋ = −ωof sin(ωot) + ḟ cos(ωot) ẍ = −ω2
of cos(ωot) − 2ωoḟ(t) sin(ω)ot) + f̈ cos(ωot). (3)

Now we plug this back into the original equation, but keep only the fewest derivatives of f . This
gives:

−2ωoḟ(t) sin(ωot) − 2ωoβf(t) sin(ωot) = 0 (4)

or

ḟ = −βf f = ae−βt. (5)

So this is the solution we found by proceeding exactly.

Now the axion obeys a similar equation, but now with a time-dependent friction (which comes,
it turns out, from the expansion of the universe):

ẍ +
2

t
ẋ + ω2

ox = 0. (6)

Proceeding as before:

ḟ = −
1

t
f (7)

so

f =
a

t
. (8)



2 Fourier series and the Driven Oscillator

(See, for example, chapter 7 of Boas).
For functions which are periodic with period T , calling ω = 2π

T
,

f(t) =
∞
∑

−∞

aneinωt (9)

This form is in some ways the simplest; it can also be written in terms of sines and cosines. The
an’s can then be written quite compactly:

an =
1

T

∫ T

o
dtf(t)e−inωt. (10)

Using this we can write a solution for any periodic forcing function:

ẍ + 2βẋ + ω2
ox = f(t) =

∑

aneinωt (11)

by using the superposition principle for linear differential equations. For any one exponential, we
have:

x = xcomp +
∞
∑

−∞

an

(ω2
o − ω2n2) + 2inβω

(12)

This approach, however, is limited to periodic forcing functions. Using Fourier transformations

we can consider more general driving terms (see Boas, p. 648). Any function which vanishes
sufficiently rapidly at infinity can be written as:

f(t) =

∫

∞

−∞

g(ω)eiωtdω (13)

with

g(ω) =
1

2π

∫

∞

−∞

f(t)e−iωtdt (14)

Again, using the linear superposition principle, we can write the general solution of our differential
equation, now in terms of an integral rather than a sum:

ẍ + 2βẋ + ω2
ox = f(t) =

∫

g(ω)eiωtdω (15)

so

x = xcomp +

∫

∞

−∞

g(ω)

(ω2
o − ω2) + 2iβω

eiωt (16)

An example where we can do everything in closed form is a gaussian,

f(t) = e
−

t
2

t2
o (17)

Then

g(ω) =

∫

∞

−∞

dt

2π
e
−iωt− t

2

t2o (18)

Now the good thing about Gaussian integrals like this is that you can always do them. We can
derive a formula which always works (even when some of the constants are complex, as here):

∫

dxe−ax2+bx =

∫

dxe−a(x− b

2a
)2+ b

2

4a (19)



Now change variables, u = x − b/2, and the integral becomes:

e
b
2

4a

∫

∞

−∞

e−au2

(20)

=

√

π

a
e

b
2

4a

For us, a = 1
t2o

, b = −iω, so

g(ω) = to
√

πe−
ω
2

t
2
o

4 . (21)

So now we can write the solution to the differential equation as an integral. For the particular
solution we have:

xpart =

∫

∞

−∞

dω
to
√

πe−
ω
2

t
2
o

4

(ω2
o − ω2) + 2iβω

eiωt (22)

Now this integral, I have to confess, is hard. But it simplifies in the limit that β � ω. Then
the integral gets most of its contribution from the region where ω = ωo. In fact, if β were zero, the
integral would be infinite!

xpart ≈
∫

∞

−∞

dω
to
√

πe−
ω
2
ot

2
o

4

(ω2
o − ω2) + 2iβωo

. (23)

The remaining integral can be done in various ways (e.g. by contour integrals – later in 114B)

=
i

ωo

to
√

πe−
ω
2
ot

2
o

4 eiωot−βt


