
Physics 105. Mechanics. Professor Dine

Fall, 2005. Handout: The Pendulum

These notes are meant as a supplement to the materials in chapter 4 of your

textbook.

1 The Pendulum: Solution By Perturbative Methods

The equation of motion for the pendulum is

θ̈ + ω2

o sin(θ) = 0. (1)

This is a highly non-linear equation. For small oscillation, however, it is nearly linear. The usual
elementary treatment corresponds to approximating

sin(θ) ≈ θ. (2)

Then the pendulum oscillates with frequency ωo, independent of the amplitude. We can, however,
consider corrections, even if the oscillations are small. These introduce some interesting features.
Here we keep the next correction to the sine function:

sin(θ) ≈ θ −

1

6
θ3. (3)

The equation of motion is now:

θ̈ + ω2

oθ =
1

6
ω2

oθ
3. (4)

We could try to solve this equation by approximating θ on the right hand side by the lowest order
solution,

θ = θo cos(ωot) (5)

(we have taken as initial conditions θ(0) = θo; θ̇(0) = 0). But we have to be careful. Calling
θ(t) = θo cos(ωot) + δ(t), the equation for δ(t) is:

δ̈(t) + ω2

oδ(t) =
ω2

o

6
θ3

o(
3

4
cos(ωot) +

1

8
cos3(ωot)). (6)

We are making the approximation of dropping terms of higher order in θo than θ3
o . This procedure

– known as perturbation theory – has produced a linear equation for δθ. This is an equation for a
harmonic oscillator with two driving terms, and we can try to find a particular solution by solving
for δθ with each term separately. The problem is that the first term is a driving term at exactly the
resonant frequency. So we can’t solve this in the usual way. Instead, we make an educated guess.
We assume that the frequency is corrected, i.e. that

θ(t) = θo cos(ω1t) + δ(t) (7)

where ω1 is not much different than ωo. Then the equation with the first forcing term gives an
equation for ω1:

(ω2

o − ω2

1)θo =
ω2

oθ
3
o

8
ω2

o , (8)



or, since ωo ≈ ω1,

ω1 − ωo =
1

16
ωoθ

2

o . (9)

We can derive this result another way, using conservation of energy. We will do this in a
moment, but we first put this together to get the full result. Looking for a solution

δ(t) = A cos(3ωot) (10)

we find, plugging back in:

A =
θ3
o

388
(11)

The figure shows a comparison with a numerical solution of the equation and the analytic result,
for different values of θo.

Finally, let’s work out another derivation of the frequency. We use conservation of energy. For
the pendulum, the energy is:

E =
1

2
`mθ̇2 + mg`(1 − cos(θ)). (12)

The energy is conserved. For a pendulum starting at rest at θo,

E = mg`(1 − cos(θo). (13)

So we can write:

dθ

dt
=

√

2mg`(1 − cos(θo) − 1 + cos(θ)) =
√

2mg`(cos(θ) − cos(θo)). (14)

In the usual way, we can rewrite this as:

∫ T

4

o

dt =

∫

θo

o

dθ
1

√

2mg`(cos(θ) − cos(θo))
(15)

I won’t do the integral here, but you can check that if you expand the cosine and keep the leading
term, you obtain the result we found above.


