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Generalities about Waves

The utility of the cosine/sine solutions of the wave equation can be understood by thinking about
the Fourier expansion of a wave. Physicists speak of ”plane waves”, since the surfaces on which the
waves are constant (in space) are planes (e.g. z = C for a wave moving along the z axis). Such a
wave carries infinite energy; real waves are bounded in space and carry finite energy. Still, provided
that the waves are not too narrow in space, the plane wave picture is a good one. More precisely,
if ∆x is the spread in space, the spread in wave number, ∆k, is of order

∆k ∼ 1

∆x

So if ∆x � λ, the typical wavelength, the spread in k is small compared to a wavelength.
Let’s focus on motion in one dimension. Fourier’s integral theorem (see Boas, chapter 15,

for example) states that a general function, defined on the line, can be expanded, under suitable
conditions, as:

f(x) =

∫ ∞

−∞
g(k)eikxdk (1)

where the function g(k) is given by

g(k) =
1

2π

∫ ∞

−∞
f(x)e−ikxdx (2)

This can be understood as a limit of the ordinary Fourier series, written, not in terms of sines and
cosines, but of exponentials:

f(x) =
2π

L

∑

n

e
2πin

L gn(2π/L) (3)

where

gn =
1

2π

∫ L/2

−L/2
e

−2πin
L f(x) (4)

(here I have changed slightly the definition of gn, multiplying it by a constant compared to what
Boas uses; the content of the formulas is the same). Taking the limit L → ∞, and calling k = 2πn/L,
one can replace the sum over n by an integral, and note

dn = L
dk

2π
(5)

Exercise: Verify that eqns. 3 and 4 agree with what you learned in 116 (e.g. check Boas,
or your favorite text; make sure you understand why that factors of 2π and L are questions of
convention, i.e. check how this convention compares with Boas). Then verify that (1) and (2)
follow as a limiting case.

The problems that usually interest us in physics satisfy the “suitable conditions”: electromagnetic
signals carrying finite energy, Schrodinger wave functions which have finite probability (“normal-
izable”).



Let’s consider a particularly simple example: a wave which has a Gaussian shape. In other
words, remembering that the solution of the wave equation which moves to the right is

f(x, t) = f(x − vt) (6)

We’ll take g(k) to be a nice Gaussian peaked about a particular wave number, k0:

g(k) =
1

∆k
exp

(

−(k − k0)
2

(∆k)2

)

(7)

We have learned that solutions of the wave equation are functions f(x − vt). So to determine
f(x, t) we need to evaluate:

f(x − vt) =

∫ ∞

−∞
dk

1

∆k
exp

(

−(k − k0)
2

(∆k)2
+ i(kx − ωt)

)

(8)

To do this integral, we just need the following “integral table”:

∫ ∞

−∞
due−au2+bu (9)

=

∫ ∞

−∞
due−a(u−b/2a)2+ b2

4a

=

√

π

a
e

b2

4a .

For us

a = 1/(∆k)2; b =
2k0

(∆k)2
+ i(x − vt).

So plugging in the formula:

f(x, t) =
√

πeik0x−ω0te−(x−vt)2 ∆k2

4 . (10)

This is almost the plane wave; it is essentially the plane wave but localized in a region of space
centered at x = vt, of size of order 1/∆k.



Boundary Conditions

Let’s consider the case of two strings tied together at x = 0. The tensions and mass per unit
length are different on each side. Call the solution to the left f−, the solution to the right f+. If
the wave comes in from the left, then f− will be the sum of an incoming wave (moving to the right)
and a reflected wave (moving to the left). f+ will describe a transmitted wave: We can write this
as:

f− = AIe
ik1(x−v1t) + AReik1(−x−v1t)+iδR. (11)

f+ = AT eik2(x−v2t)+iδT . (12)

In order that the boundary conditions be satisfied at all times, the frequencies on the two sides
must be the same, so k1v1 = k2v2 = ω. Setting x = 0, then, we have the equations:

AI + AReiδR = AT eiδT . (13)

k1AI − k1AReiδR = k2AT eiδT . (14)

Note ki = ωi/vi, i = 1, 2. Calling ÃR = AReiδR, etc., we have a simple system of linear equations
to solve:

ÃI + ÃR = ÃT (15)

(ÃI − ÃR) =
v1

v2
ÃT =

v1

v2
(ÃI + ÃR)

So

ÃR =
ÃI(1 − v1/v2)

1 + v1/v2
= ÃI

(

v1 − v2

v1 + v2

)

(16)

ÃT =
2v2

v1 + v2
ÃI .

Or, putting back the δ’s:

AReiδR =
AI(v1 − v2)

v1 + v2
AT eiδT =

2v2

v1 + v2
AI (17)

We see that δT = 0, while if v1 > v2, δR = 0, and if v1 < v2, δR = π. Remember:

v2
i =

Ti

µi
. (18)

Note the general strategy: we express the strength of the reflected and transmitted waves in
terms of that of the incident wave. We also determine the phase relation. We will need to do the
same thing for electromagnetic waves. This will be slightly more complicated due to the two possible
ways to polarize the waves, but the ideas are identical. One enumerates the boundary conditions,
and solves for the reflected and transmitted amplitudes in terms of the incoming amplitudes.

Wave Packets at Boundaries

Again, the description of boundaries in terms of plane waves is a bit troubling. For example,
the incoming and reflected waves are on top of each other. But if we work with wave packets, the
picture is more sensible. Before writing equations, let me just describe the result. Initially, one
has a wave packing coming in from the left, with no reflected or transmitted wave. At some time
(call it time t = 0), the wave reaches the boundary. At this point, the reflected and transmitted
wave packets appear. Later, there is only a reflected wave packing, moving to the right, and a
transmitted wave packet, moving to the left.



To see this mathematically, let’s look at our earlier derivation of the motion of the wave packet
in a different way. Start with

f(x, t) ∝
∫

dk eik(x−vt)−
(k−k0)2

∆k2 (19)

Now if x − vt is much different than zero, the oscillations of the exponential factor tend to wash
out the integral. One expects that the main contribution comes when the exponent, as a function
of k, is most slowly varying, i.e. when

i(x − vt) = 2(k − k0)/∆k2. (20)

The i is a bit weird, but we had this when we did the Gaussian integral earlier. Note also that we
are assuming ∆k is small, so k is near k0 in the integral. We learn two things here. First, x ≈ vt
wherever f is appreciable; second, if we just substitute back for k−k0 in the exponent, we see that
the result of the integral is approximately:

f ∝ eik(x−vt)e−
(x−vt)2∆k2

4 (21)

just as we found before.
But now take the case of the boundary. Now we have:

x < 0 : f(x, t) ∝
∫

dk

(

AIe
ik(x−vt)−

(k−k0)2

∆k2 + AReik(−x−vt)−
(k−k0)2

∆k2

)

(22)

x > 0 : f(x, t) ∝
∫

dk AT eik(x−vt)−
(k−k0)2

∆k2 (23)

But from our example above, we know how these integrals behave. The incoming term is
appreciable when x ≈ vt, x < 0, i.e. it is only appreciable for t < 0. The reflected term is only
appreciable for x ≈ −vt, x < 0, i.e. for t > 0! Similarly, the transmitted wave is only appreciable
for x ≈ vt, x > 0, i.e. it is only appreciable for t > 0. This is exactly the picture we outlined above.



Features of Electromagnetic Waves

From Maxwell’s equations, with no charges or currents:

[∇2 − 1

c2

∂2

∂t2
] ~E = 0 [∇2 − 1

c2

∂2

∂t2
] ~B = 0 (24)

with c2 = 1/(εoµo). These have plane wave solutions:

~E(~r, t) = ~Eoe
i~k·~r−iωt ~B(~r, t) = ~Boe

i~k·~r−iωt (25)

where ω = c|~k|. From Maxwell’s equations,

~∇ · ~E = 0 =⇒ ~k · ~Eo = 0 ~∇ · ~B = 0 =⇒ ~k · ~Bo = 0 (26)

and from
~∇× ~E = − ∂

∂t
~B (27)

~B =
~k × ~Eo

ω
=

k̂ × ~Eo

v
(28)

The energy and momentum density of a plane wave can be worked out from the formulas for u
and ~S. It is useful to time-average. This gives:

〈u〉 =
1

2
εoE

2
o 〈~S〉 =

1

2
cεoE

2
o k̂ (29)

In matter, for linear media, the equations are very similar to those above, with c replaced by

v =
1√
εµ

=
c

n
n =

√

εµ

εoµo
(30)

ε, and correspondingly n, can be complex. This leads to dissipation. n is also, in general, a function
of frequency, which leads to dispersion. A simple model of a material as a collection of harmonic
oscillators, with characteristic frequency ωo and damping constant γ gives for the real part of the
index of refraction:

n =
ck

ω
= 1 +

Nq2

2mεo

ω2
o − ω2

(ω2
o − ω2)2 + γ2ω2

(31)

and for the damping part (twice the imaginary part:

α =
Nq2ω2

2mεo

γ

(ω2
o − ω2)2 + γ2ω2

. (32)



Boundary Conditions for Electromagnetic Waves

Boundary conditions are very important. From Maxwell’s equations, one has:

ε1E
⊥
1 = ε2E

⊥
2 B⊥

1 = B⊥
2 (33)

E
‖
1 = E

‖
2

1

µ1
B

‖
1 =

1

µ2
B

‖
2 . (34)

So let’s see what happens. The problem is a bit more complicated than the string case, because
of the two possible polarizations of the waves (and the fact that we have to deal with both ~E and
~B.

It is helpful to consider various special cases (refer to your book and to lecture for figures).

Normal Incidence:

E0I + E0R = E0T (35)

and
1

µ1

(

1

v1
E0I −

1

v1
E0R

)

=
1

µ2

1

v2
E0T . (36)

After a little algebra:

E0R =

(

1 − β

1 + β

)

E0I E0T =
2

1 + β
E0I β =

µ1v1

µ2v2
=

µ1n2

µ2n1
(37)

Note the parallels to the string example. In the case that µi ≈ µ0 (typical), then

E0R =
v2 − v1

v2 + v1
=

1
v1

− 1
v2

1
v1

+ 1
v2

E0I =
n1 − n2

n1 + n2
E0I (38)

Fraction of energy reflected, transmitted:

I =
1

2
vεE2 (39)

so

R =
IR

II
=

(

n1 − n2

n1 + n2

)2

(40)

T =
IT

II
=

ε2v2

ε1v1

(

E0T

E0I

)2

=
4n1n2

(n1 + n2)2
. (41)

(“reflection” and “transmission” coefficients). Note T + R = 1.

Oblique Incidence

This is the general case. First, there are several results which follow by virtue of the fact that there
are boundary conditions to be satisfied. The equality of frequencies now means:

kIv1 = kRv1 = kT v2 (42)

while the fact that the phase must be equal everywhere on the boundary translates into the state-
ment (taking ~ki in the xz plane):

kIx = kRx = kTx (43)

This gives two important relations, independent of any details of the electric and magnetic fields:

sin θI = sin θR (44)



and
sin θT

sin θR
=

n1

n2
(45)

The first of these states that the angle of incidence is the angle of reflection; second is Snell’s law.
Now the boundary conditions on the fields give:

ε1( ~E0I + ~E0R)z = ε2( ~E0T )z (46)

( ~B0I + ~B0R)z = ( ~B0T )z

( ~E0I + ~E0R)x,y = ( ~E0T )x,y (47)

1

µ1
( ~B0I + ~B0R)x,y =

1

µ2
( ~B0T )x,y

Now we break this into two cases:

1. Polarization Parallel to Plane of Incidence

2. Polarization Perpendicular to Plane of Incidence

We will focus on the first case. We can be more explicit about the boundary conditions: Perpen-
dicular E (Ez):

εI(−E0I sin θI + E0R sin θR) = ε2(−E0T sin θT )

~B is in the y direction, so there is no perp. condition. For the parallel components, we have:

E0I cos θI + E0R cos θR = E0T cos θT .

and from the parallel component of B:

1

µ1v1
(E0I + E0R) =

1

µ2v2
E0I

This is actually the same as the ~E perp equation; to see this, divide by sin θR and use Snell’s law.
calling

α =
cos θT

cos θI
β =

µ1n2

µ2n1

gives the Fresnel equations:

E0R =
α − β

α + β
E0I

E0T =
2

α + β
E0I .

Perhaps not surprisingly, the amplitudes of the reflected and transmitted waves depend on the
angle of incidence.
Special cases

1. θI = π
2 : (grazing incidence) α diverges. Total reflection.

2. Brewster’s angle: α = β; no reflected wave. Some algebra:

sin2 θI =
1 − β2

(

n1
n2

)2
− β2



For conductors, ωo = 0. A good conductor will be characterized by a small γ, so

ε ≈ Nq2

mεo

i

γω
. (48)

and

k =
ω

v
≈ ω

√
ε = e

iπ
4

√

nq2

mεoγ
(49)

We can also derive this relation thinking about ~J = σE,

k ≈ e
iπ
4

√

ωσ

2
. (50)

This gives a relation between σ and the damping term, which we understood more microscopically
in terms of the mean free path of electrons in the material.

Dispersion: When the speed of light is not constant as a function of frequency, one encounters
the phenomenon of dispersion. The basic idea is that ω = ω(k), where ω(k) is more complicated
than ck. So consider a Gaussian wave packet (for simplicity in one dimension), i.e.

f(x, t) =

∫ ∞

−∞

dk

2π
g(k)eikx−iω(k)t. (51)

Take
g(k) = Ce−(k−ko)2/(∆k)2 . (52)

This solves the wave equation, with a variable speed of light (check!). This integral is hard for a
general function, but if ∆k is small, than we can expand:

ω(k) = ω(ko) + (k − ko)vg vg =
dω

dk
|ko

. (53)

The resulting integral is a standard gaussian integral, which is done by completing the squares

∫ ∞

−∞
due−au2+bu =

√

π

a
eb2/4 (54)

and the result is:
f(x, t) ≈ ei(kox−ωot)e−(x−vgt)2(∆k)2/4. (55)

which is a plane wave modulated by a Gaussian. If we were a bit more careful, keeping the next
term in the Taylor expansion of ω, we would see that the wave packet spreads in time. We now
have

ω(k) = ω(ko) + (k − ko)vg +
1

2
ν(k − ko)

2. (56)

We still have to do a Gaussian integral, and can use the same formula as before, though the algebra
is a bit messier. The result for f(x, t) is still a Gaussian, but now proportional to

exp

[

−(x − vgt)
2(∆k)2

1

[1 + ν(∆k)2t2/4]
(1 − i/2ν(∆k)2t)

]

. (57)

The prefactor now depends on t as well. But note that the width increases with time; there is now
also a more complicated phase factor.



Waveguides

Here we show that for TM and TE modes, one can obtain the transverse components of the
fields in terms of Ez or Bz, respectively.

From Faraday’s law we have:
∂xEy − ∂yEx = iωBz (58)

ikEx − ∂xEz = iωBy

∂yEz − ikEy = iωBx

Similarly, from Ampere

∂xBy − ∂yBx = −i
ω

c2
Ez (59)

ikBx − ∂xBz = −i
ω

c2
By

∂yBz − ikBy = iωBx

These equations can be solved for Ex, Ey, Bx, By in terms of ∂iEz, ∂iBz. E.g. in second and
third equations, solve for By, Bx and substitute in last two equations. This gives equations for
Ex, Ey, with solutions:

Ex =
i

(ω/c)2 − k2
(k∂xEz + ω∂yBz) . (60)

Ey =
i

(ω/c)2 − k2
(k∂yEz − ω∂xBz) .

There are similar solutions for Bx, By:

Bx =
i

(ω/c)2 − k2

(

k∂xBz − ω/c2∂yEz

)

. (61)

By =
i

(ω/c)2 − k2

(

k∂yBz + ω/c2∂xEz

)

.

So if we can solve for Ez, Bz, we know all of the fields.


