Physics 110B. Electricity and Magnetism. Professor Dine

Spring 2006: FINAL EXAM. Take Home. Due Monday, June 10. 4:00 PM (Physics Office)

Problem 1. For an electromagnetic wave of the form:

$$
\begin{equation*}
\vec{E}=\vec{E}_{o} e^{i k z-i \omega t} \tag{1}
\end{equation*}
$$

use Maxwell's equations to: a. show that the polarization of the wave is perpendicular to its direction of motion.
Solution: From $\vec{\nabla} \cdot \vec{E}=0, \hat{z} \cdot \vec{E}_{o}=0$.
b. find the relation between ω and k , and from this the velocity of the wave (phase velocity).

Solution: This follows from the wave equation. Plugging in, gives the equation $\omega^{2}=c^{2} k^{2}$.
c. Find the relation between \vec{E} and \vec{B}.

Solution:

This you can find from

$$
\vec{\nabla} \times \vec{E}=-\frac{\partial \vec{B}}{\partial t}
$$

For our solution, this reads:

$$
i k \hat{z} \times \vec{E}_{o}=i \omega \vec{B}_{o}
$$

so

$$
\vec{B}_{o}=\frac{k}{\omega} \vec{k} \times \vec{E}_{o}=\frac{1}{c} \hat{k} \times \vec{E}_{o}
$$

Problem 2. A particle moves in a circle in the $x-y$ plane.
a. Write a formula for the trajectory of the particle, assuming that the radius of the circle is ρ and the frequency of rotation is ω.
Solution: A suitable trajectory is:

$$
\vec{x}(t)=\rho(\hat{x} \cos (\omega t)+\hat{y} \sin (\omega t))
$$

b. Compute the dipole moment of the particle, relative to the origin.

Solution:

$$
\vec{p}(t)=q \vec{x}(t)
$$

Note that

$$
\frac{d^{2}}{d t^{2}} \vec{p}=-\omega^{2} \vec{p}
$$

c. Compute the \vec{E} and \vec{B} fields far away from the formula for dipole radiation.

Solution: Here you can plug in to eqn. 11.56, 11.57 of your text,

$$
\vec{E}=-\frac{\mu_{o} \omega^{2}}{4 \pi r}\left[\hat{r} \times\left(\hat{r} \times \frac{d^{2} \vec{p}}{d t^{2}}\right)\right]
$$

and

$$
\vec{B}=\frac{\mu_{o} \omega^{2}}{4 \pi r c}\left[\hat{r} \times \frac{d^{2} \vec{p}}{d t^{2}}\right] .
$$

These expressions can be simplified by using the triple product identity:

$$
\vec{E}=-\frac{\mu_{o} \omega^{2}}{4 \pi r}\left[\hat{r}\left(\hat{r} \cdot \frac{d^{2} \vec{p}}{d t^{2}}\right)-\frac{d^{2} \vec{p}}{d t^{2}}\right] .
$$

Taking $\frac{d^{2} \vec{p}}{d t^{2}}$ along the z axis, the dot product above is just $\cos (\theta)$.
d. Compute the \vec{E} and \vec{B} fields from the formulas we derived for the \vec{E} and \vec{B} fields of a charged particle. Remember, radiation requires acceleration.
Solution:Look at eqn. 10.65. We are only interested in the acceleration term. Also, our derivation of the dipole formula required non-relativistic velocities, so we can make the same approximation here. For low velocities, $\vec{u} \approx c \hat{r}$, so

$$
\vec{E} \approx \frac{1}{4 \pi \epsilon_{o} c^{2} r}\left[\hat{r} \times\left(\hat{r} \times \frac{d^{\overrightarrow{2}} x}{d t^{2}}\right)\right] .
$$

But $\frac{d^{2} \vec{x}}{d t^{2}}=-\omega^{2} \vec{x}$, for our circular trajectory. Noting the definition of \vec{p}, and $c^{2}=1 /\left(\mu_{o} \epsilon_{o}\right)$, gives our formula for $\vec{E} . \vec{B}$ works similarly.
Problem 3. Work out the following in terms of ordinary three vectors and scalars: a. $x^{\mu} k_{\mu}$. If $k=(\omega / c, \vec{k})$, show that $e^{i x^{\mu} k_{\mu}}$ is the usual expression for a plane wave.

Solution:

$$
x^{\mu} k_{\mu}=-x^{o} k^{o}+\vec{k} \cdot \vec{x}=-\omega t+\vec{k} \cdot \vec{x} .
$$

This is just the phase of our standard plane wave.
b. Show that $p^{\mu} p_{\mu}$ is $-m^{2} c^{2}$, for a particle of mass m.

Solution:

$$
p^{\mu} p_{\mu}=-E^{2} / c^{2}+\vec{p}^{2}=\frac{1}{c^{2}}\left(m^{2} c^{4}+\vec{p}^{2} c^{2}\right)-\vec{p}^{2}=-m^{2} c^{2} .
$$

Problem 4. A relativistic wave equation: The infamous Higgs boson obeys a wave equation similar to that for light. It is simpler, since there is just one field, ϕ. The equation is:

$$
\begin{equation*}
\left[-\vec{\nabla}^{2}+\frac{1}{c^{2}} \frac{\partial^{2}}{\partial t^{2}}+\omega_{o}^{2} / c^{2}\right] \phi=0 \tag{2}
\end{equation*}
$$

Here ω_{o} is a constant.
a. Show that $e^{i(\vec{k} \cdot \vec{x}-\omega t)}$ solves the wave equation. What is the relation between ω and k ?

Solution: Plugging in the equation, we obtain:

$$
c^{2} k^{2}-\omega^{2}+\omega_{o}^{2}
$$

or

$$
\omega^{2}=c^{2} k^{2}+\omega_{o}^{2} .
$$

b. What is the group velocity of the waves?

Solution:

$$
v_{g}=\frac{\partial \omega}{\partial k}=\frac{c k}{\omega}
$$

c. Now let's do some quantum mechanics and relativity together. If $p=\hbar k$, and $E=\hbar \omega$, what is $p^{\mu} p_{\mu}$? Interpret this in terms of the mass of the Higgs boson.
Solution: Using these relations, we have:

$$
E^{2} / c^{2}-p^{2}=\hbar^{2} \omega_{o}^{2} / c^{2}=-m^{2} c^{2}
$$

, or

$$
m^{2}=\frac{\hbar^{2} \omega_{o}^{2}}{c^{4}}
$$

d. Given your result in part b, does the particle ever move faster than the speed of light?

Solution:No, since $v_{g}<c$ if $\omega_{o}>0$.
Problem 5. An electromagnetic wave is described, in the gauge $\vec{\nabla} \cdot \vec{A}=0$ by a vector potential of the form:

$$
\begin{equation*}
\vec{A}(\vec{x}, t)=\vec{A}_{o} e^{i(\vec{k} \cdot \vec{x}-\omega t)} \tag{3}
\end{equation*}
$$

The scalar potential vanishes, $V=0$.
a. What does the gauge condition imply about \vec{A}_{o} ?

Solution:

$$
\vec{k} \cdot \vec{A}_{o}=0
$$

i.e. the vector potential is transverse to the direction of motion of the wave.
b. Calculate the \vec{E} and \vec{B} fields. Check that they are transverse. Show that they obey the usual relations,

$$
\begin{equation*}
\vec{B}=\frac{1}{c} \hat{k} \times \vec{E} \tag{4}
\end{equation*}
$$

Solution: Both are simple, especially since $V=0$.

$$
\vec{E}=\frac{1}{c} \frac{\partial \vec{A}}{\partial t}=-i \omega \vec{A}_{o} e^{i(\vec{k} \cdot \vec{x}-\omega t)}
$$

The i here means that \vec{A} and \vec{E} are 90° out of phase. Similarly:

$$
\vec{B}=\vec{\nabla} \times \vec{A}=i \vec{k} \times \vec{A}_{o} e^{i(\vec{k} \cdot \vec{x}-\omega t)}
$$

Again note the i, which indicates the phase relation.
c. Express the energy density and the Poynting vector in terms of \vec{A}.

Solution: It is helpful, first, to remember that time averaging,

$$
<\operatorname{Re} e^{-i \omega t} \operatorname{Re} e^{-i \omega t}>=\frac{1}{2} \quad<\operatorname{Im} e^{-i \omega t} \operatorname{Im}>=\frac{1}{2}
$$

The factors of i pull out the imaginary part of the exponential. So

$$
u_{e m}=\frac{1}{2}\left(\epsilon_{o} E^{2}+\frac{1}{\mu_{o}} B^{2}\right)=\frac{1}{4}\left(\epsilon_{o} / c^{2} \omega^{2} \vec{A}_{o}^{2}+\frac{1}{\mu_{o}}\left(\vec{k} \times \vec{A}_{o}\right)^{2}\right)
$$

But $\left(\vec{k} \times \vec{A}_{o}\right)^{2}=k^{2} A_{o}^{2}-\left(\vec{k} \cdot \vec{A}_{o}\right)^{2}=k^{2} A_{o}^{2}$, so the whole expression simplifies to:

$$
u_{e m}=\frac{1}{2} k^{2} \epsilon_{o} A_{o}^{2}
$$

Similarly,

$$
\vec{S}=\mu_{o} \vec{E} \times \vec{B}=\frac{\mu_{o}}{2 c} \omega \vec{A}_{o} \times\left(\vec{k} \times \vec{A}_{o}\right.
$$

Using the triple product identity and the transversality of \vec{A}_{o}, gives

$$
\vec{S}=\frac{\mu_{o}}{2} k^{2} A_{o}^{2} \hat{k}
$$

Problem 6. Derive a formula for ϵ for a conductor, assuming that the electrons in the conductor are free (there is no harmonic restoring force). Show that the real and imaginary parts of ϵ are equal in magnitude. Write a formula for the attenuation of a wave in the conductor with distance.
Solution: This we did in class. Start with the equation of motion:

$$
\ddot{x}+\gamma \dot{x}=\frac{q E}{m}
$$

with

$$
E=E_{o} e^{-i \omega t}
$$

describing the sinusoidal behavior of the field at the position of the particle. The solution is:

$$
x=\frac{q E_{o}}{-i m \gamma} e^{-i \omega t}
$$

To get the susceptibility, we multiply this by q and the density. At low frequencies, because of the ω, this gives:

$$
\epsilon \approx \frac{N q^{2}}{m \epsilon_{o} \gamma \gamma} i
$$

(compare eqn. 9.161 of your text). Now

$$
k=\frac{\omega}{c} \sqrt{\epsilon}
$$

as usual, so, from

$$
\begin{aligned}
\sqrt{i}=e^{i \pi / 4} & =\frac{1+i}{\sqrt{2}} \\
k=\alpha(1+i) \quad \alpha & =\frac{1}{2} \sqrt{\frac{N q^{2} \omega}{m \epsilon_{o} \gamma}}
\end{aligned}
$$

and $1 / \alpha$ is the attenuation length.

