
Physics 110B. Electricity and Magnetism. Professor Dine

Spring 2006: FINAL EXAM. Take Home. Due Monday, June 10. 4:00 PM (Physics Office)

Problem 1. For an electromagnetic wave of the form:

~E = ~Eoe
ikz−iωt, (1)

use Maxwell’s equations to: a. show that the polarization of the wave is perpendicular to its
direction of motion.
Solution: From ~∇ · ~E = 0, ẑ · ~Eo = 0.
b. find the relation between ω and k, and from this the velocity of the wave (phase velocity).
Solution: This follows from the wave equation. Plugging in, gives the equation ω2 = c2k2.
c. Find the relation between ~E and ~B.

Solution:

This you can find from

~∇× ~E = −∂ ~B

∂t
.

For our solution, this reads:

ikẑ × ~Eo = iω ~Bo

so
~Bo =

k

ω
~k × ~Eo =

1

c
k̂ × ~Eo

Problem 2. A particle moves in a circle in the x − y plane.
a. Write a formula for the trajectory of the particle, assuming that the radius of the circle is ρ and
the frequency of rotation is ω.
Solution: A suitable trajectory is:

~x(t) = ρ(x̂ cos(ωt) + ŷ sin(ωt))

b. Compute the dipole moment of the particle, relative to the origin.

Solution:

~p(t) = q~x(t)

Note that
d2

dt2
~p = −ω2~p.

c. Compute the ~E and ~B fields far away from the formula for dipole radiation.

Solution: Here you can plug in to eqn. 11.56, 11.57 of your text,

~E = −µoω
2

4πr
[r̂ × (r̂ × d2~p

dt2
)]

and

~B =
µoω

2

4πrc
[r̂ × d2~p

dt2
].



These expressions can be simplified by using the triple product identity:

~E = −µoω
2

4πr
[r̂

(

r̂ · d2~p

dt2

)

− d2~p

dt2
].

Taking d2~p
dt2

along the z axis, the dot product above is just cos(θ).

d. Compute the ~E and ~B fields from the formulas we derived for the ~E and ~B fields of a charged
particle. Remember, radiation requires acceleration.

Solution:Look at eqn. 10.65. We are only interested in the acceleration term. Also, our derivation
of the dipole formula required non-relativistic velocities, so we can make the same approximation
here. For low velocities, ~u ≈ cr̂, so

~E ≈ 1

4πεoc2r
[r̂ × (r̂ ×

~d2x

dt2
)].

But d2~x
dt2

= −ω2~x, for our circular trajectory. Noting the definition of ~p, and c2 = 1/(µoεo), gives

our formula for ~E. ~B works similarly.

Problem 3. Work out the following in terms of ordinary three vectors and scalars: a. xµkµ. If

k = (ω/c,~k), show that eixµkµ is the usual expression for a plane wave.

Solution:

xµkµ = −xoko + ~k · ~x = −ωt + ~k · ~x.

This is just the phase of our standard plane wave.

b. Show that pµpµ is −m2c2, for a particle of mass m.

Solution:

pµpµ = −E2/c2 + ~p2 =
1

c2
(m2c4 + ~p2c2) − ~p2 = −m2c2.

Problem 4. A relativistic wave equation: The infamous Higgs boson obeys a wave equation similar
to that for light. It is simpler, since there is just one field, φ. The equation is:

[−~∇2 +
1

c2

∂2

∂t2
+ ω2

o/c2]φ = 0. (2)

Here ωo is a constant.

a. Show that ei(~k·~x−ωt) solves the wave equation. What is the relation between ω and k?

Solution: Plugging in the equation, we obtain:

c2k2 − ω2 + ω2
o

or

ω2 = c2k2 + ω2
o .

b. What is the group velocity of the waves?

Solution:

vg =
∂ω

∂k
=

ck

ω

c. Now let’s do some quantum mechanics and relativity together. If p = h̄k, and E = h̄ω, what is
pµpµ? Interpret this in terms of the mass of the Higgs boson.

Solution: Using these relations, we have:



E2/c2 − p2 = h̄2ω2
o/c2 = −m2c2

, or

m2 =
h̄2ω2

o

c4

d. Given your result in part b, does the particle ever move faster than the speed of light?

Solution:No, since vg < c if ωo > 0.

Problem 5. An electromagnetic wave is described, in the gauge ~∇ · ~A = 0 by a vector potential
of the form:

~A(~x, t) = ~Aoe
i(~k·~x−ωt). (3)

The scalar potential vanishes, V = 0.
a. What does the gauge condition imply about ~Ao?

Solution:

~k · ~Ao = 0

i.e. the vector potential is transverse to the direction of motion of the wave.
b. Calculate the ~E and ~B fields. Check that they are transverse. Show that they obey the usual
relations,

~B =
1

c
k̂ × ~E. (4)

Solution: Both are simple, especially since V = 0.

~E =
1

c

∂ ~A

∂t
= −iω ~Aoe

i(~k·~x−ωt).

The i here means that ~A and ~E are 90o out of phase. Similarly:

~B = ~∇× ~A = i~k × ~Aoe
i(~k·~x−ωt).

Again note the i, which indicates the phase relation.
c. Express the energy density and the Poynting vector in terms of ~A.

Solution: It is helpful, first, to remember that time averaging,

< Re e−iωtRe e−iωt >=
1

2
< Im e−iωtIm >=

1

2
.

The factors of i pull out the imaginary part of the exponential. So

uem =
1

2
(εoE

2 +
1

µo
B2) =

1

4

(

εo/c2ω2 ~A2
o +

1

µo
(~k × ~Ao)

2
)

.

But (~k × ~Ao)
2 = k2A2

o − (~k · ~Ao)
2 = k2A2

o, so the whole expression simplifies to:

uem =
1

2
k2εoA

2
o.

Similarly,
~S = µo

~E × ~B =
µo

2c
ω ~Ao × (~k × ~Ao

Using the triple product identity and the transversality of ~Ao, gives

~S =
µo

2
k2A2

ok̂.



Problem 6. Derive a formula for ε for a conductor, assuming that the electrons in the conductor
are free (there is no harmonic restoring force). Show that the real and imaginary parts of ε are
equal in magnitude. Write a formula for the attenuation of a wave in the conductor with distance.

Solution: This we did in class. Start with the equation of motion:

ẍ + γẋ =
qE

m

with
E = Eoe

−iωt

describing the sinusoidal behavior of the field at the position of the particle. The solution is:

x =
qEo

−imγ
e−iωt

To get the susceptibility, we multiply this by q and the density. At low frequencies, because of the
ω, this gives:

ε ≈ Nq2

mεoγγ
i

(compare eqn. 9.161 of your text). Now

k =
ω

c

√
ε

as usual, so, from
√

i = eiπ/4 =
1 + i√

2

k = α(1 + i) α =
1

2

√

Nq2ω

mεoγ

and 1/α is the attenuation length.


