1 The Potential of a Moving Point Particle

Starting, for example, with

$$V(\vec{x}, t) = \int d^3 \vec{x}' dt' \frac{1}{|\vec{x} - \vec{x}'|} \rho(\vec{x}', t') \delta(t - t' - \frac{1}{c}|\vec{x} - \vec{x}'|).$$

(1)

$$\vec{A}(\vec{x}, t) = \int d^3 \vec{x}' dt' \frac{1}{|\vec{x} - \vec{x}'|} \vec{J}(\vec{x}', t') \delta(t - t' - \frac{1}{c}|\vec{x} - \vec{x}'|).$$

(2)

one might think, for a point particle, one would simply obtain, for V, say,

$$V(\vec{x}, t) = \frac{1}{4\pi \epsilon_0} \frac{1}{|\vec{x} - \vec{x}_0(t)|}.$$

(3)

but this is not correct. To understand this, we can work more carefully (as we will below) with the δ-function. But we can see the issue by using our representation of the δ-function as a very narrow Gaussian (where we take the limit in the end). In other words, we write

$$\rho(\vec{x}, t) = \left(\frac{1}{\sqrt{\pi} \sigma}\right)^3 e^{-\frac{|\vec{x} - \vec{x}_0(t)|^2}{\sigma^2}}.$$

(4)

(and similarly for \vec{J}). When we do the integrals above, we need to be careful about the fact that the retarded time depends on \vec{x}'. Let’s look at this carefully. Consider $V(\vec{c}, t)$:

$$\frac{q}{4\pi \epsilon_0} \int d^3 \vec{x}' \frac{1}{|\vec{c} - \vec{x}'|} \frac{1}{(\sqrt{\pi} \sigma)^3} e^{-\frac{|\vec{x}' - \vec{x}_0(t)|^2}{\sigma^2}}.$$

(5)

To do the integral, we note that for small σ, $\vec{x}' \approx \vec{x}_0$, so we write:

$$\vec{x}' = \vec{x}_0(t_R) + \vec{u}.$$

(6)

where

$$\vec{t}_R = t - \frac{|\vec{x} - \vec{x}_0(t_R)|}{c}.$$

(7)

Now, we can write:

$$t_r = t - \frac{|\vec{x} - \vec{x}'|}{c} = t - \frac{|\vec{x} - \vec{x}_0(t_R) - \vec{u}|}{c}.$$

$$= t - \frac{|\vec{x} - \vec{x}_0(t_R)|}{c} + \frac{\vec{u} \cdot (\vec{x} - \vec{x}_0(t_R))}{c|\vec{x} - \vec{x}_0(t_R)|}.$$

\[t_R + \frac{\vec{u} \cdot \vec{R}}{cR} \]

where

\[\vec{R} = \vec{x} - \vec{x}_0(t_R). \]

(9)

Using this result, we can write the objection in the exponential as:

\[|\vec{x}' - \vec{x}_0(t_r)|^2 = |\vec{x}' - \vec{x}_0(t_R) - \vec{v}(t_r - t_R)|^2 \]

(10)

\[= |\vec{u} - \vec{v} \frac{\vec{u} \cdot \vec{R}}{R}|^2. \]

So, finally, the integral is simple. Take \(\vec{v} \) along the \(x \) axis. Then the factor in the exponent becomes:

\[u_y^2 + u_z^2 + u_x \left(1 - \frac{vR_x}{R} \right)^2 \]

(11)

The integrals along the \(y \) and \(z \) directions just give \(\sqrt{\pi \sigma^2} \). The integral along the \(x \) direction gives an extra factor of

\[\frac{1}{(1 - v \frac{R_x}{R})} \]

For a general direction (not \(x \)), the factor is:

\[\frac{1}{1 - \vec{v} \cdot \frac{\vec{R}}{R}} \]

So from this we obtain:

\[V(\vec{r}, t) = \frac{q}{4\pi\varepsilon_0} \frac{1}{R - \frac{1}{c} \vec{v}_0 \cdot \vec{R}} \]

(12)

\[A(\vec{r}, t) = \mu_0 \frac{q \vec{v}}{4\pi} \frac{1}{R - \frac{1}{c} \vec{v}_0 \cdot \vec{R}} \]

(13)
2 The Lienard-Wiechert Potentials Directly from the Delta-Function

We can derive the scalar and vector potential for a point charge starting with the expressions we wrote for the scalar and vector potentials,

\[V(\vec{x}, t) = \int d^3x' dt' \frac{1}{|\vec{x} - \vec{x}'|} \rho(\vec{x}', t') \delta(t - t' - \frac{1}{c} |\vec{x} - \vec{x}'|). \] (14)

\[\vec{A}(\vec{x}, t) = \int d^3x' dt' \frac{1}{|\vec{x} - \vec{x}'|} \vec{J}(\vec{x}', t') \delta(t - t' - \frac{1}{c} |\vec{x} - \vec{x}'|). \] (15)

and the charge and current distributions we wrote for point charges:

\[\rho(\vec{x}, t) = \sum_i q \delta(\vec{x} - \vec{x}_o(t)) \]
\[\vec{j}(\vec{x}, t) = \sum_i q \vec{v}_o(t) \delta(\vec{x} - \vec{x}_o(t)) \] (16)

where \(\vec{x}_o(t) \) is the position of the particle at time \(t \), and \(\vec{v}_o \) is its velocity.

We just need to figure out how to do the integral over the \(\delta \)-function. For a \(\delta \)-function, the most we care about is its behavior near the point where its argument vanishes. We called \(t_R \) the solution to this condition,

\[t_R = t - \frac{1}{c} |\vec{x} - \vec{x}_o(t_R)|. \] (17)

What is somewhat complicated about this equation is that it is an implicit equation for \(t_R \). We can solve it, however, once we know the trajectories of the charged particle. At time \(t' = t_R + (t' - t_R) \) near \(t_R \), we can Taylor expand the position:

\[\vec{x}_o(t) \approx \vec{x}_o(t_R) + (t' - t_R) \vec{v}_o(t_R) \] (18)

Using this, we can write:

\[|\vec{x} - \vec{x}_o(t')| \approx |\vec{x} - \vec{x}_o(t_R) - (t' - t_R) \vec{v}_o(t_R)| \] (19)

Call \(\vec{R} = \vec{x} - \vec{x}_o(t_R) \); then

\[|\vec{x} - \vec{x}_o(t')| \approx (\vec{R}^2 - 2 \vec{R} \cdot \vec{v}_o(t' - t_R))^{1/2} \]
\[\approx \vec{R} - \frac{\vec{R} \cdot \vec{v}_o}{\vec{R}} (t' - t_R) \] (20)

So finally, the argument of the \(\delta \)-function is:

\[\delta([t - \frac{1}{c} \vec{R} - \frac{1}{c} \vec{v}_o \cdot \vec{R}] - t' (1 - \frac{1}{c} \vec{v}_o \cdot \vec{R})). \] (21)

Remember that \(t' \) is the integration variable and note that \(t' \) appears only in the second set of terms. The \(\delta \) function still vanishes when \(t' = t_R \). But what we also need is that:

\[\delta(a(t' - t_R)) = \frac{1}{a} \delta(t' - t_R)). \] (22)

So from this we obtain:

\[V(\vec{r}, t) = \frac{q}{4 \pi \epsilon_o} \frac{1}{\vec{R} - \frac{1}{c} \vec{v}_o \cdot \vec{R}} \] (23)

\[\vec{A}(\vec{r}, t) = \mu_o \frac{q\vec{v}}{4 \pi} \frac{1}{\vec{R} - \frac{1}{c} \vec{v}_o \cdot \vec{R}} \] (24)

where in each case, the quantities on the right hand side are evaluated at the retarded time.
3 Evaluating the Fields

Our index notation is particularly effective in evaluating the \vec{E} and \vec{B} fields of a point charge. We need to evaluate:

$$\vec{E} = -\frac{\partial \vec{A}}{\partial t} - \vec{\nabla} V \quad \vec{B} = \vec{\nabla} \times \vec{A}. \quad (25)$$

We need to be careful, however, because t_R is implicitly a function of \vec{x}. So when we take derivatives with respect to \vec{x}, we need to differentiate not only the terms with explicit \vec{x}'s, but also the terms with t_R. So we start by working out these derivatives. Differentiating both sides of:

$$t_R = t - \frac{1}{c} |\vec{x} - \vec{x}_o(t_R)| \quad (26)$$

remembering that

$$|\vec{x} - \vec{x}_o(t_R)| = ((x_i - x_{ai})^2)^{1/2} \quad (27)$$

gives

$$\partial_i t_R = -\frac{1}{c} \frac{R_i}{R} + \frac{\vec{v}_o(t_R)}{c} \cdot \frac{\vec{R}}{R} \partial_i t_R \quad (28)$$

Solving for $\partial_i t_R$:

$$\partial_i t_R = -\frac{R_i}{c R} \left(\frac{1}{1 - \frac{\vec{v}_o(t_R)}{c} \cdot \frac{\vec{R}}{R}} \right) \quad (29)$$

It will also be useful to have a formula for $\partial_i \mathcal{R}$. From

$$\mathcal{R} = c(t - t_R) \quad (30)$$

we have

$$\partial_i \mathcal{R} = -c \partial_i t_R. \quad (31)$$

So now we can start taking derivatives.

$$\partial_i V = -\frac{qc}{4\pi \epsilon_0 (Rc - \vec{R} \cdot \vec{v})^2} \partial_i (Rc - \vec{R} \cdot \vec{v}) \quad (32)$$

Now

$$\partial_i \vec{R} \cdot \vec{v} = \partial_i (r_j - x_{aj}(t_R)) \dot{x}_{aj}(t_R)$$

$$= \dot{x}_{oi} - \dot{x}_{oj} \partial_i t_R - \mathcal{R}_j \dot{x}_{oj} \partial_i t_R \quad (33)$$

So

$$\partial_i V = -\frac{qc}{4\pi \epsilon_0 (Rc - \vec{R} \cdot \vec{v})^2} \left(-c \partial_i t_R + v^2 \partial_i t_R + \vec{R} \cdot \vec{a} \partial_i t_R - v_i \right) \quad (34)$$

Using our expression for $\partial_i t_R$ gives:

$$\partial_i V = -\frac{qc}{4\pi \epsilon_0 (Rc - \vec{R} \cdot \vec{v})^2} \left[-c^2 \mathcal{R}_i + v^2 \mathcal{R}_i + \vec{R} \cdot \vec{a} \mathcal{R}_i - v_i (\vec{R} \cdot \vec{v} - c\mathcal{R}) \right] \quad (35)$$

With a bit more algebra, one can show:

$$\frac{\partial \vec{A}}{\partial t} = \frac{1}{4\pi \epsilon_0} \frac{qc}{(Rc - \vec{R} \cdot \vec{v})^3} \left[(Rc - \vec{R} \cdot \vec{v})(-\vec{v} + \mathcal{R} \vec{a}/c) + \frac{\mathcal{R}}{c} (c^2 - v^2 + \vec{R} \cdot \vec{a}) \vec{v} \right] \quad (36)$$

and combining these, you obtain:

$$\vec{E}(\vec{r}, t) = \frac{1}{4\pi \epsilon_0} \frac{\mathcal{R}}{(\vec{R} \cdot \vec{u})^3} \left[(c^2 - v^2) \vec{u} + \vec{R} \times \vec{u} \times \vec{a} \right] \quad (37)$$
where \(\vec{u} = c\hat{\mathbf{R}} - \vec{v} \). Similarly,
\[
\vec{B} = \frac{1}{c} \hat{\mathbf{R}} \times \vec{E}(\vec{r}, t).
\] (38)

Exercise: Fill in the details of the calculations of \(\vec{E} \) and \(\vec{B} \), using the index notation as above.

Where does the energy go?
\[
\vec{S} \cdot \hat{\mathbf{r}} = \frac{1}{\mu_0} (\vec{E} \times \vec{B}) \cdot \hat{n}
\] (39)
\[
= \frac{q^2}{4\pi c R^2} \left| \frac{\hat{\mathbf{r}} \times (\hat{\mathbf{r}} - \hat{\beta}) \times \frac{q\hat{\beta}}{\mu} \left[1 - (1 - \hat{\beta} \cdot \hat{n})^3 \right]}{(1 - \hat{\beta} \cdot \hat{n})^3} \right|^2
\]

Note different behaviors if velocity parallel, perpendicular to acceleration (circular vs. linear motion). Also peaking with angle.