Physics 110. Electricity and Magnetism. Professor Dine

Spring, 2008. Handout: Alternative Approach to the
Lienard-Wiechart Potentials

1 The Potential of a Moving Point Particle

Starting, for example, with
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one might think, for a point particle, one would simply obtain, for V, say,
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but this is not correct. To understand this, we can work more carefully (as we will below) with the
d-function. But we can see the issue by using our representation of the d-function as a very narrow
Gaussian (where we take the limit in the end). In other words, we write
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(and similarly for J). When we do the integrals above, we need to be careful about the fact that
the retarded time depends on #'. Let’s look at this carefully. Consider V' (¢, t):
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To do the integral, we note that for small o, ¥’ ~ T, so we write:
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Now, we can write:
T — 7|
tr =1— 8
. ) (5)

|7 — Zo(tr)| | - (% — To(tr))
c |z — Zo(tr)|




=t
Rt cR
where
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Using this result, we can write the objection in the exponential as:
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So, finally, the integral is simple. Take ¥/ along the x axis. Then the factor in the exponent becomes:
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The integrals along the y and z directions just give vVwro?2. The integral along the x direction gives
an extra factor of
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For a general direction (not x), the factor is:
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So from this we obtain: )
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2 The Lienard-Wiechart Potentials Directly from the Delta-Function

We can derive the scalar and vector potential for a point charge starting with the expressions we
wrote for the scalar and vector potentials,
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and the charge and current distributions we wrote for point charges:
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where 7, (t) is the position of the particle at time ¢, and @, is its velocity.

We just need to figure out how to do the integral over the d-function. For a d-function, the
most we care about is its behavior near the point where its argument vanishes. We called ti the
solution to this condition,
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What is somewhat complicated about this equation is that it is an implicit equation for tz. We can

solve it, however, once we know the trajectories of the charged particle. At time ¢’ =t + (¢ —tr)
near tr, we can Taylor expand the position:
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Using this, we can write:
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So finally, the argument of the §-function is:
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Remember that ¢’ is the integration variable and note that ¢’ appears only in the second set of
terms. The & function still vanishes when t' = tp. But what we also need is that:
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where in each case, the quantities on the right hand Slde are evaluated at the retarded time.



3 Evaluating the Fields

Our index notation is particularly effective in evaluating the E and B fields of a point charge. We

need to evaluate:
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We need to be careful, however, because t is implicitly a function of . So when we take derivatives
with respect to &, we need to differentiate not only the terms with explicit @’s, but also the terms
with £r. So we start by working out these derivatives. Differentiating both sides of:
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Solving for 0;tg:
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It will also be useful to have a formula for 9;R. From
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So now we can start taking derivatives.
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Using our expression for 0;tr gives:
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With a bit more algebra, one can show:
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and combining these, you obtain:
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where @ = ¢R — ¢. Similarly,
R x E(F,1). (38)

Exercise: Fill in the details of the calculations of E and B , using the index notation as above.
Where does the energy go?
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Note different behaviors if velocity parallel, perpendicular to acceleration (circular vs. linear mo-
tion). Also peaking with angle.



