Problem 1. Practice with vectors.
a. Calculate the gradient of \(r = |\vec{x}| \), using the formula for the gradient in spherical coordinates below.
Solution: In eqn. 5 below, only the first term is non-vanishing; \(\nabla r = \hat{r} \).
b. Do the same using Cartesian coordinates and the index notation.
Solution:
\[
\frac{\partial_i \sqrt{x_j x_j}}{\sqrt{x_j x_j}} = \hat{r}_i
\]
(1)
giving same result as above.

Problem 2. Spherical waves.
a. Explain why \(f(r) = e^{ikr - i\omega t} \) solves the wave equation if \(r \) is large. Use the formula for the Laplacian in spherical coordinates (see below).
Solution: In eqn. 6, only need do keep first term, and only terms where the derivatives act on the exponential. So
\[
\nabla^2 f = -k^2 f
\]
(2)
So the wave equation is solved if \(\omega = ck \).
b. Do the same using Cartesian coordinates and the index notation.

Problem 3. We saw that the electric field of a point charge is:
\[
\vec{E}(\vec{r}, t) = \frac{q}{4\pi \epsilon_0} \frac{\vec{R}}{(\vec{R} \cdot \vec{u})^3} \left[(c^2 - v^2)\vec{u} + \vec{R} \times (\vec{u} \times \vec{a}) \right].
\]
(3)
where \(\vec{u} = c\hat{R} - \vec{v} \), and \(\vec{R} = \vec{r} - \vec{x}_0(t_r) \).
a. Which of the two terms in brackets describes radiation? Why?
Solution: Second term since it falls as \(1/r \) for large \(r \). Note it is the only term involving the acceleration.
b. In the limit of zero velocity, show this reduces to the formula you know so well.
Solution: Setting \(v = 0 \), we have \(\vec{u} = c\hat{R} \), and so we get
\[
\vec{E} = \frac{1}{4\pi \epsilon_0 \vec{R}^3} \vec{R}.
\]
(4)
This is the familiar Coulomb form.

Formulas You Might Need

1.
\[
(\vec{A} \times \vec{B})_i = \epsilon_{ijk} A_j B_k
\]
(5)
2.
\[
\epsilon_{ijk} \epsilon_{k\ell m} = (\delta_{i\ell} \delta_{jm} - \delta_{im} \delta_{j\ell})
\]
(6)
3.
\[
\vec{E} = -\nabla V - \frac{\partial \vec{A}}{\partial t} \quad \vec{B} = \nabla \times \vec{A}
\]
(7)
4. Gradient in spherical coordinates:

\[\vec{\nabla} f = \frac{\partial f}{\partial r} \hat{r} + \frac{1}{r} \frac{\partial f}{\partial \theta} \hat{\theta} + \frac{1}{r \sin \theta} \frac{\partial f}{\partial \phi} \hat{\phi}. \]

(8)

5. Laplacian in spherical coordinates:

\[\nabla^2 f = \frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 \frac{\partial f}{\partial r} \right) + \frac{1}{r^2 \sin \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial f}{\partial \theta} \right) + \frac{1}{r^2 \sin^2 \theta} \frac{\partial^2 f}{\partial \phi^2}. \]

(9)