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Poynting Vector

We derived the energy density and the energy flux of the electromagnetic field:
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We worked this out for our plane wave solution:
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k

ω
A cos(kz − ωt) (3)

where ω = k/
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ε0µ0. Then
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whereas
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√
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so
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√
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uẑ = cuẑ. (6)

So the flux of energy, is just the energy density times the velocity at which the wave moves.



The Maxwell Stress Tensor – some practice with our index methods

From the Lorentz force law and Maxwell’s equations, we derived the expression:
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=
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(7)
Now we want to write this so it looks like another conservation equation: one derivative term,

one divergence term. For this, our index notation is useful. Start with:

fi =

∫

dτ (−ε0µ0Si + hi) (8)

with

hi = ε0 [∂jEjEi − εijkEjεklm∂`Em] +
1

µ0

[∂jBjBi − εijkBjεklm∂`Bm] . (9)

Using our familiar identity,

εijkEjεklm∂`Em = (δi`δjm − δimδjl)Ej∂`Em (10)

= Ej∂iEj − Ej∂jEi

=
1

2
∂i( ~E2) − Ej∂jEi

The term with two ε’s and ~B is similar, so we have
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2
∂i(ε0E

2
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j ) + ε0 [(∂jEj)Ei + Ej∂jEi] +
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µ0

ε0 [(∂jBj)Bi + Bj∂jBi] (11)

Now this looks almost like what we want; the second term is a divergence (of something with an i
index!). But we can write the first term in the form of a divergence by judicious use of Kronecker
delta’s. For example,

∂iE
2

j = ∂jδijE
2

k (12)

In this way, if we define:

Tij = ε0(EiEj −
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2
δij

~E2) +
1

µ0

(BiBj −
1

2
δij

~B2) (13)

then
hi = ∂jTij (14)

and we have
(

dPEM

dt

)

i

= ∂jTij . (15)

Here
~PEM = ε0µ0

~S. (16)


