Physics 110. Electricity and Magnetism. Professor Dine

Spring, 2008. Handout: Poynting Vector and Stress Tensor

Poynting Vector
We derived the energy density and the energy flux of the electromagnetic field:
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We worked this out for our plane wave solution:
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where w = k/,/éopg. Then
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So the flux of energy, is just the energy density times the velocity at which the wave moves.



The Maxwell Stress Tensor — some practice with our index methods

From the Lorentz force law and Maxwell’s equations, we derived the expression:
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Now we want to write this so it looks like another conservation equation: one derivative term,
one divergence term. For this, our index notation is useful. Start with:
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Using our familiar identity,
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The term with two €’s and B is similar, so we have
1 9o 1 5 1
hi = =5 0i(eo B + %Bj) + €0 [(0,E;) Ei + E;0,Ej] + 0 [(0;B;)Bi + B;0; Bi (11)
Now this looks almost like what we want; the second term is a divergence (of something with an ¢

index!). But we can write the first term in the form of a divergence by judicious use of Kronecker
delta’s. For example,
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In this way, if we define:
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Here
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