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24-1 The transmission line

In the last chapter we studied what happened to the lumped elements of circuits 24-1 The transmission line
when they were operated at very high frequencies, and we were led to see that a
resonant circuit coyld be replaced by a cavity with the fields resonating inside.
Another interesting technical problem is the connection of one object to another, 24-3 The cutoff frequency
80 th?.t electromagn‘etic energy can be t-ransmitted.between them. In low-frequency 24-4 The speed of the guided waves
circuits the connection is made with wires, but this method doesn’t work very well
at high frequencies because the circuits would radiate energy into all the space 24-5 Observing guided waves
around them, and it is hard to control where the energy will go. The fields spread
out around the wires; the currents and voltages are not “guided” very well by
the wires. In this chapter we want to look into the ways that objects can be 24-7 Waveguide modes
interconnected at high frequencies. At least, that’s one way of presenting our
subject.

Another way is to say that we have been discussing the behavior of waves in
free space. Now it is time to see what happens when oscillating fields are confined
in one or more dimensions. We will discover the interesting new phenomenon
when the fields are confined in only two dimensions and allowed to go free in the
third dimension, they propagate in waves. These are “guided waves™—the subject
of this chapter.

We begin by working out the general theory of the transmuission line. The
ordinary power transmission line that runs from tower to tower over the country-
side radiates away some of its power, but the power frequencies (50-60 cycles/sec)
are so low that this loss is not serious. The radiation could be stopped by surround-
ing the line with a metal pipe, but this method would not be practical for power
lines because the voltages and currents used would require a very large, expensive,
and heavy pipe. So simple “open lines™ are used.

For somewhat higher frequencies—say a few kilocycles—radiation can al-
ready be serious. However, it can be reduced by using “twisted-pair” transmission
lines, as is done for short-run telephone connections. At higher frequencies, how-
ever, the radiation soon becomes intolerable, either because of power losses or
because the energy appears in other circuits where it isn’t wanted. For frequencies
from a few kilocycles to some hundreds of megacycles, electromagnetic signals
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24-2 The rectangular waveguide

24-6 Waveguide plumbing

24-8 Another way of looking at the
guided waves

and power are usually transmitted via coaxial lines consisting of a wire inside a
cylindrical “outer conductor” or *shield.” Although the following treatment will
apply to a transmission line of two parallel conductors of any shape, we will carry e e e
it out referring to a coaxial line.

We take the simplest coaxial line that has a central conductor, which we sup-
pose is a thin hollow cylinder, and an outer conductor which is another thin Fig. 24-1
cylinder on the same axis as the inner conductor, as in Fig. 24-1. We begin by ' )
figuring out approximately how the line behaves at relatively low frequencies.

We have already described some of the low-frequency behavior when we said
earlier that two such conductors had a certain amount of inductance per unit
length or a certain capacity per unit length. We can, in fact, describe the low-
frequency behavior of any transmission line by giving its inductance per unit
length, L, and its capacity per unit length, Cy. Then we can analyze the line as
the limiting case of the L-C filter as discussed in Section 22-6. We can make a
filter which imitates the line by laking small series elements L, Ax and small
shunt capacities Cp Ax, where Ax is an element of length of the line. Using our
results for the infinite filter, we see that there would be a propagation of electric f
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A coaxial transmission line.
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Fig. 24-2. The currents and voltages
of a transmission line.

signals along the line. Rather than following that approach, however, we would
now rather look at the Jine from the point of view of a differential equation.

Suppose that we see what happens at two neighboring points along the
transmission linc, say at the distances x and x -+ Ax from the beginning of the
line. Let’s call the voltage difference between the two conductors ¥(x), and the
current along the “hot™ conductor /(x) (see Fig. 24-2). 1If the current in the line
is varying, the inductance will give us a voltage drop ucross the small section of
line from x to x 4+ Ax in the amount

AV = Vi + 80) = V() = ~Loax &

Or, taking the limit as Ax — 0, we get

av al
G = —Log- (24.1)

The changing current gives a gradient of the voltage.

Referring again to the figure, if the voltage at x is changing, there must be
some charge supplied to the capacity in that region. If we take the small picce of
line between x and x + Ax, the charge on itis ¢ = Cy AxV. The time raie-of-
change of this charge is Cyy Ax d¥/dt, but the charge changes only if the current
{(x) into the element is different from the current f(x + Ax) out. Calling the differ-
ence Af, we have

dav
AI = —-C() Ax _(W .
Taking the limit as Ax — 0, we get
af 14
ax~ O (242)

So the conservation of charge implies that the gradient of the current is propor-
tional to the time rate-of-change of the voltage.

Equations (24.1) and (24.2) are then the basic equations of a transmission
line. If we wish, we could modify them to include the effects of resistance in the
conductors or of leakage of charge through the insulation between the conductors.
but for our present discussion we will just stay with the simple example.

The two transmission line equations can be combined by differentiating one
with respect to 7 and the other with respect to x and eliminating either V or /.
Then we have either

&’V 8%y

axt = Colog (243)
or

a*r 37

m = CULO w . (24.4)

Once more we recognize the wave equation in x. For a uniform transmission
line, the voltage (and current) propagates along the line as a wave. The voltuge
along the line must be of the form ¥(x, 1) = f(x — of) or Fx, 1) = g(x + 1),
or a sum of both, Now what is the velocity »? We know that the coefficient of
the 92/as% term is just {/»% so

P (24.5)

VLoC,y

We will leave it for you to show that the voltage for each wave in a line is
proportional to the current of that wave and that the constant of proportionality
is just the characteristic impedance zq. Calling ¥ and I, the voltage and current
for a wave going in the plus x-direction, you should get

V+. = ZUI-I-' (24.6)
24-2




Similary, for the wave going toward minus x the relation is
V__ = —ZDI_..

The characteristic impedance—as we found out from our filter equations—is

given by
L,
Zg = = (24.7)
9

and is, therefore, a pure resistance.

To find the propagation speed ¢ and the characteristic impedance zo of a
transmission line, we have to know the inductance and capacity per unit length,
We cun calculate them easily for a coaxial cable, so we will see how that goes. For
the inductance we follow the ideas of Section 17-8, and set 1L7° equal to the mag-
netic energy which we get by integrating e,c®B%/2 over the volume. Suppose
that the central conductor carries the current I; then we know that B = 1/2weqc’r,
where # is the distance from the axis. Taking as a volume element a cylindrical
shell of thickness dr and of length [, we have for the magnetic energy

€0C° ! f z
U= T/a (’2;'5—06‘—2") 127r di‘,

where a and b are the radii of the inner and outer conductars, respectively. Carry-
ing out the integral, we get

2
LIPS (24.8)

U=---—
darepc? a

Setting the energy equal ta 4£.7°%, we find
! b

L= 2meqc? n 2

(24.9)

It is, as it should be, proportional to the length 7 of ihe line, so the inductance per
unit length Ly is

[, = n®/a) (24.10)

We have worked out the charge on a cylindrical condenser (see Section 12-2),
Now, dividing the charge by the potential difference, we get

_ 27!'50!
€=t (b/a)

The capacity per unit length Cy is €/ Combining this result with Eq. (24.10),
we see that the product L,Cy is just equal to 1/e% so ¢ = 1/+/LyCy is equal
to c. The wave travels down the line with the speed of light. We point out that this
result depends on our assumptions: (a) that there are no dielectrics or magnetic
materials in the space between the conductors, and (b) that the currents are all on
the surfaces of the conductors (as they would be lor perfect conductors). We will
see later that for good conductors at high frequencies, all currents distribute
themselves on the surfaces as they would for a perfect conducter, so this assump-
tion is then valid,

Now it is interesting that so Jong as assumptions {a) and (h) are correct, the
product L€y is equal 1o 1/¢? for any parallel pair of conductors—even, say, for 4
hexagonal inner conductor anywhere inside an elliptical outer conductor. So long
as the cross section is constant and the space between has no material, waves are
propagated at the velocily of light.

No such general statement can be made about the characteristic impedarce.
For the couxial line, it is
- Inp/a),

o)
st (24.11)
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Fig. 24-3. Coordinates chosen for
the rectangular waveguide.
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Fig. 24-4. The electric field in the
waveguide at some value of z,
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Fig. 24-5. The z-dependence of the
field in the waveguide.

The factor 1/eqc has the dimensions of a resistance and is equal to 1207 ohms.
The geometric factor In (b/a) depends only logarithmically on the dimensions, so
for the coaxial line—and most lines—the characteristic impedance has typical
values of from 50 ohms or so to a few hundred ohms.

24-2 The rectangular waveguide

The next thing we want to talk about seems, at first sight, to be a striking
phenomenon: if the central conductor is removed from the coaxial line, it can still
carry electromagnetic power. In other words, at high enough frequencies a hollow
tube will work just as well as one with wires. It is related to the mysterious way in
which a resonant circuit of a condenser and induetance gets replaced by nothing
but a can at high frequencies.

Although it may seem to be a remarkable thing when one has been thinking
in terms of a transmission line as a distributed inductance and capacity, we all
know that electromagnetic wuves can travel along inside u hollow metal pipe.
I the pipe 1s straight, we can see through it! So certainly electromagnetic waves
go through a pipe. But we also know that it is not possible to transmit low-fre-
quency waves (power or telephone) through the inside of a single metal pipe. So
it must be that electromagnetic waves will go through if their wavelength is short
enough. Therefore we want to discuss the limiting case of the longest wavelength
(or the lowest frequency) that can get through a pipe of a given size. Since the
pipe is then being used to carry waves, it is called a waveguide.

We will begin with a rectangular pipe, because it is the simplest case io
analyze. We will first give a mathematical treaiment and come back later to look
at the problem in a much more elementary way. The more elementary approach,
however, can be applied easily only to a rectangular guide. The basic phenomena
are the same for a general guide of arbitrary shape, so the mathematical argument
is fundamentally more sound.

Cur problem, then, is to find what kind of waves can exist inside a rectangular
pipe. Let’s first choose some convenient coordinates; we take the z-axis along the
length of the pipe, and the x- and y-axes parallel to the two sides, as shown in
Fig. 24-3.

We know that when light waves go down the pipe, they have a transverse
electric field ; so suppose we look first for solutions in which E is perpendicular to
z, say with only a p-component, E,. This electric field will have some variation
across the guide; in fact, it must go to zero at the sides paralle] to the y-axis, because
the currents and charges in a conductor always adjust themselves so that there is
no tangential component of the electric field at the surface of a conductor. So
E, will vary with x in some arch, as shown in Fig. 24-4. Perhaps it is the Bessel
function we found for a cavity? No, because the Bessel function has to do with
cylindrical geometries. For a rectangular geometry, waves are usually simple
harmonic functions, so we should try something like sin k.x.

Since we want waves that propagate down the guide, we expect the field lo
alternate between positive and negative values as we go along in z, as in Fig, 24-3,
and these oscillations will travel along the guide with some velocity ». 1f we have
oscillations at some definite frequency w, we would guess that the wave might vary
with z like cos(wr — k.2), or to use the more convenient mathematical form.
like ¢'@!™%:2  This z-dependence represents a wave travelling with the speed
v = w/k, (sce Chapter 29, Vol. I). ‘

So we might guess that the wave in the guide would have the following
mathematical form:

E, = FEysin kyxe @t %, (24.12)

Let’s see wheiher this guess satisfies the correct field equations. First, the
electric field should have no tangential components at the conductors. Qur field
satisfies this requirement; it is perpendicular to the top and bottom faces and is
zero at the two side faces. Well, it is if we choose k. so that one-half a cycle of
24-4




sin k,x just fits in the width of the guide—that is, if

k.q = T. (24.13)
There are other possibilitics, like kz.a = 27, im, ... ,or, in general,

kma = HT, (24.14)

where n is any integer. These represent various complicated arrangements of the
field, but for now let’s take only the simplest one, where k, = w/a, where a is
the width of the inside of the guide.

Next. the divergence of E must be zero in the free space inside the guide,
since there are no charges there, Our £ has only a y-component, and it doesn’t
change with y, so we do have that ¥ - E =0

Finally, our electric field must agree with the rest of Maxwell’s equations in
the frec space inside the guide. That is the same thing as saying that it must
satisfy the wave equation
L 2B LK,

dz* 2 ot

3By n PE,

o = 0. (24.15)

We have to see whether our guess, Eq. (24.12), will work. The second derivative of
E, with respect to x is just ~k%E,. The second derivative with respect to y is
zero, since nothing depends on p. The second derivative with respect to z is —K2E,,
and the second derivative with respect to #is —w?E,. Equation (24.15) then says
that

3
({4}
k:%Ey + kEEI} - C—z

E, = 0.
Unless E, is zero everywhere (which is not very interesting), this equation is correct
if
2 2 w2

ki k:— == 0. (24.16)
We have already fixed &, so this equation tells us thut there can be waves of the
type we have assumed if k. is related to the frequency w so that Eq. (24.16) is
satisfied—in other words, if

k. = \V(wEict) — (i a?), (24.17)

The waves we have described are propagated in the z-direction with this value of k..
The wave number &, we get from Eq. (24.17) tells us, for a given frequency w,
the speed with which the nodes of the wave propagate down the guide. The
phase velocity is
[¢3)
r=p (24.18)
You will remember that the wavelength A of a travelling wave is given by
A = 2mu/w, so k. is also equal to 27/X,. where A, is the wavelength of the oscilla-
tions along the z-direction—the “‘guide wavelength.” The wavelength in the gude
is different ,of course, from the free-space wavelength of electromagnetic waves
of the same frequency. If we call the free-space wavelength A, which is equal to
2wc/w, we can write Eq. (24.17) as

A, = Ao (24.19)

'\/I _— (?\0;’2&)"5

Besides the clectric fields there are magnetic fields that will travel with the
wave, but we will not bother to work out an expression for them right now. Since
¢2V X B = aE/dr, the lines of B will circulate around the regions in which
AE/0¢ is largest, that is, hallway between the maximum and minimum of E. The
loops of B will lic parallel to the xz-plane and between the crests and troughs of
E. as shown in Fig. 24-6.

24-5

Fig. 24-6.
waveguide.

The magnetic field in the
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Fig. 24-7. The variation of E, with
z for w < we.

24-3 The cutoff frequency

In solving Eq. (24.16) for k.. there should really be two roots—one plus and
one minus. We should write

kz = == 4/ ((,.,12/162) - (WZ_"{;E). (2420)

The two signs simply mean that there can be waves which propagate with a nega-
tive phase velocity (toward - z), as well as waves which propagate in the positive
direction in the guide. Naturally. it should be possible for waves to go in either
direction. Since both types of waves can be present at the same time, there will be
the possibility of standing-wave solutions.

Our equation for k. also tells us thut higher frequencies give larger vaJues of
k., and therefore smaller wavelengths, until m the limit of large w, k becomes
equal to w/e, which is the value we would expeet for waves in free space. The
light we ““see” through a pipe still travels at the speed ¢. But now notice that if we
go toward fow frequencies, something strange happens. At first the wavelength
gets longer and longer, but if w gets too small the quantity inside the square root
of Eq. (24.20) suddenly becomes negative. This will happen as scon as w gets to
be less than we/a—or when A becomes greater than 2a. In other words, when
the frequency gets smaller than a certain criticul frequency w. = w¢/u, the wave
number k&, (and also A,) becomes imaginary and we haven't got a solution any
more. Or do we? Who said that k. has to be real? What if it does come out
imaginary? Our field equations are still satislfied. Perhaps an imaginary k; also
represents a wave.

Suppose w is less than w,: then we can wrile

k., = =ik’ (24.21)

where k' is a positive real number:

K = ~/(m2/a?) — (w2/c?). (24.22)
If we now go back to our expression, Eq. (24.12), for E,, we have

E, = Egsinkxe™ ™2, (24.23)
which we can write as
E, = Eysin kpxe™ "e®", (24.24)

This expression gives an E-field that oscillates with time as ¢t but which
varies with z as e2%'2. Tt decreases or increases with z smoothly as a rcal exponent-
jul. In our derivation we didn't worry about the sources thut started the waves,
but there must, of course, be a source someplace in the guide. The sign that goes
with k' must be the one that makes the ficld decrease with increasing distance
from the source of the waves.

So for frequencies below w, = wc/a, waves do nof propagate down the guide;
the oscillating fields penetrate into the guide only a distance of the order of 1/k".
For this reason, the frequency . is called the “cutoff’ frequency™ of the guide.
Loaking at Eq. (24.22), we see thut for frequencies just a little below w,, the num-
ber k' is small and the fields can penetrate a long distance into the guide. But if
w is much less than w,, the exponential coeflicient &k’ is equal to 7/a and the field
dies off extremely rapidly, as shown in Fig. 24-7. The field decreases by 1/¢ in the
distance /7, or in only about one-third of the guide width. The fields penetrate
very little distance from the source.

We want to emphasize an interesting feature of our analysis of the guided
waves—the appearance of the imaginary wave number k.. Normally, if we solve
an equation in physics and get an imaginary number. it doesn’t mean anything
physical. For waves, however, an imaginary wave number does mean something.
The wave equation is still satisfied; it only means that the solution gives expo-
nentially decreasing fields instead of propagating waves. So in any wave problem
where k becomes imaginary for some frequency, it means that the form of the wave
changes—the sine wave changes inlo un exponential.

24-6
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24-4 'The speed of the guided waves

The wave velocity we have used above is the phase velocity, which is the speed
of a node of the wave; it is a function of frequency. If we combine Egs. (24.17)

and (24.18), we can write
¢

V10— (w/w)? l

For frequencies above cutoff—where travelling waves exist—uw,/w is less than one,
and fpuase is Teal and greater than the speed of light. We have already seen in
Chapter 48 of Vol. I that phase velocities greater than light are possible, because it
is just the nodes of the wave which are moving and not energy or information. In
order to know how fast signals will travel, we have to calculate the speed of pulses
or modulations made by the interference of a wave of one frequency with one or
more waves of slightly different frequencies (see Chapter 48, Vol. 1). We have
called the speed of the envelope of such a group of waves the group velocity; it is
not w/k but dw/dk:

(24.25)

Uphase =

dw

Ugroup = (24.26)

Taking the derivative of Eq. (24.17) with respect to w and inverting to get de/dk.
we find thai
Peromp = V1 — (wo/w)2, (24.27)

which is less than the speed of light,
The geometric mean of vynaee a0d Lyroup 18 just ¢, the speed of light:

Uphase Pproup = e, (24.28)

This is curious, because we have seen a similar relation in quantum mechanics.
For a particle with any velocity—even relativistic—the momentum p and cnergy
U are related by

U? = pc® + mich. (24.29)
But in quantum mechanics the energy is fio, and the momentum is &/X, which is
equal to #k; so Eq. (24.29) can be written

m2c?

72

w? a
o Tk

, (24.30)

ar

k = vV(wiicl) — (m2c2/h?), {24.31)

which looks very much like Eq. (24.17). .. Interesting!

The group velocity of the waves is also the speed at which energy is transported
along the guide. If we want to find the energy flow down the guide, we can get it
from the energy density times the group velocity. If the root mean square electric
field is E;, then the average density of electric energy is eoE2/2. There is also
some energy associated with the magnetic field. We will not prove it here, but in
any cavity or guide the magnetic and electric energies are equal, so the total
electromagnetic energy density is e,£5. The power dU/dt transmitted by the guide
is then

du

T €0 Eabl groun. (24.32)

(We will see later another. more general way of getting the energy flow.)

24-5 Observing gnided waves

Energy can be coupled into a waveguide by some kind of an “antenna.” For
example, a little vertical wire or “‘stub™ will do. The presence of the guided wavcs
can be observed by picking up some of the electromagnetic energy with a little

.

receiving “antenna,” which again can be a little stub of wire or a small loop.
24-7




Fig. 24-8. A waveguide with a driv-

ing stub and a pickup probe.

FROM
SIGNAL /TO DETECTOR
GE N\E\HATOR

In Fig. 24-8, we show a guide wilh some cutaways to show a driving stub and a
pickup “probe”. The driving stub can be connected to a signal generator via a
coaxial cable, and the pickup probe cun be connected by a similar cahle to a
detector. It is usually convenient to insert the pickup probe via a long thin slot
in the guide, as shown in Fig. 24-8. Then the probe can be moved back and farth
along the guide to sample the fields at various positious,

If the signal generator is set at some frequency w greater than the cutoff
frequency w,. there will be waves propagated down the guide [rom the driving
stub. These will be the only waves present if the guide is infinitely Jong. which
can effectively be arranged by terminating the guide with a carefully designed
absorber in such a way that there are no reflections from the far end. Then, since
the detector measures the time average of the fields near the probe. it will pick
up a signal which is independent of the position along the guide; its output will
be proportional to the power being transmitted.

If now the far end of the guide is finished ofl in some way that produces a
reflected wave—as an extreme example, if we closed it ofl with a metal plate—there
will be a reftected wave in addition to the original forward wave. These two waves
will interfere and produce a standing wave in the guide similar to the standing
waves on a string which we discussed in Chapter 49 of Vol. I. Then. as the pickup
probe is moved along the line, the detector reading will rise and fall periodically,
showing a maximum in the fields at each loop of the standing wuve and a minimum
al each node, The distance between two successive nodes (or loops) is just Ay/2.
This gives a convenient way of meusuring the guide wavelength. 1f the frequency
is now moved closer 10 w,, the distances between nodes increase, showing that the
guide wavelength increases as predicted by Eq. (24.19).

Suppose now the signal generator is set at a frequency just a little below w..
Then the detector output will decrease gradually as the pickup probe is moved
down the guide. 1f the frequency is set somewhat lower, the field strength will
fall rapidly, following the curve of Fig. 24-7. and showing that waves are not
propagated.

24-6 Waveguide plumbing

An important practical use of waveguides is for the transmission of high-
frequency power, as, for example, in coupling the high-frequency oscillator or
output amplifier ol a radar set to an antenna. In fact, the antenna itself usually
consists of a parabolic reflector fed at its focus by a waveguide flared out at the
end to make a “horn™ that radiates the waves coming along the guide. Although
high frequencies can be transmitted along a coaxial cable, a waveguide is better
for transmitting large amounts of power. First, the maximum power that can be
transmitted along a line is limited by the breakdown of the insulation (solid or gas)
between the conductors. For a given amount of power, the field strengths in a
guide are usually less than they are in a coaxial cable, so higher powers cun be
transmitted before breakdown occurs. Second, the power losses in the coaxial cable
are usually greater than in a waveguide. In a coaxial cable there must be insulating
material to support the central conductor, and there is an energy loss in this
material—particularly at high frequencies. Also, the current densities on the
central conductor are quite high, and since the losses go as the sguare of the current
density, the lower currents that appear on the walls of the guide result in lower

24-8
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Fig. 24-9. Sections of waveguide connected Fig. 24-10. A low-foss connection between
with flanges. two sections of waveguide.

energy losses. To keep these [osses to a minimum, the inner surfaces of the guide
are often plated with a material of high conductivity, such as silver,

The problem of connecting a “circuit” with waveguides is quite different
from the corresponding circuit problem at low frequencies, and ts usually called
microwave “plumbing.”” Many special devices have been developed for the pur-
pose, For instance, two sections of waveguide are usually connected together by
means of flanges, as can be seen in Fig. 24-9. Such connections can, however.
cause serious energy losses, because the surface currents must flow across the joint.
which may have a relatively high resistance. One way to avoid such losses is 1o
make the langes as shown in the cross section drawn in Fig. 24-10. A small space
is left between the adjacent sections of the guide, and a groove is cut in the face of
one of the flanges to make a small cavity of the type shown in Fig. 23-16(c). The
dimensions are chosen so that this cavity is resonant at the frequency being used.
This resonant cavity presents a high “‘impedance™ to the currents, so relatively
little current flows across the metallic joints (at @ in Fig. 24-10). The high guide
currents simply charge and discharge the “capacity” of the gap (at 4 in the figure),
where there is little dissipation of energy.

Suppose you want to stop a waveguide in a way that won’t result in reflected
waves. Then you must put something at the end that imitates an infinite length of
guide. You need a “termination” which acts for the guide like the characteristic
impedance does for a transmission line—something that absorbs the arriving wives
without making reflections. Then the guide will act as though it went on forever.
Such terminations are 1nade by putting inside the guide some wedges of resistance
material carelully designcd to absorb the wave energy while generating almost
no reflected waves.

If you want to connect three things together—for instance, one source 1o
two different antennas—then you can use a *“T" ltke the one shown in Fig. 24-11.
Power fed in at the center section of the “T" will be split and go out the two side
arms {and there may also be some reflected waves). You can see qualitatively {Tom
the sketches in Fig. 24-12 that the fields would spread out when they get to the
end of the input section and make electric fields that will sturt waves going out the
two arms. Depending on whether electric fields in the guide are parallel or per-
pendicular to the “top™ of the “T,” the fields at the junction would be roughly
as shown in {(a) or (b) of Fig, 24-12.

Finally, we would like to describe a device ealled an “unidirectional coupler,”
which is very useful for telling what is going on after you have connected a compli-
cated arrangement of waveguides. Suppose you want to know which way the
waves are going in a particular section of guide—you might be wondering, for
instance, whether or not there is a strong reflected wave, The unidirectional
coupler takes out a small fraction of the power of a guide if there is a wave going
one way, but none il the wave is going the other way. By connccting the output
of the coupler to a detector, you can measure the “one-way’ power in the guide.
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Fig. 24-11. A waveguide “T." {The
flanges have plastic end caps to keep the
inside clean while the "T" is not being
used.}
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Fig. 24-13. A unidirectional coupler.

)

(a)

{b}

Fig. 24-14. Anocther possible varia-
tion of £, with x. ’

Figure 24-13 is a drawing of u unidirectional coupler; a piece of waveguide
A B has another piece of waveguide CD soldered Lo it along cne face. The guide
CD is curved away so that there is room for the connecting flanges. Before the
guides are soldered together, two (or more) holes have been drilled in each guide
(matching cach other) so that some of the fields in the main guide 48 can be
coupled into the secondary guide CD. Each of the koles acts like a little antenna
that produces a wave in the secondary guide. If there were only one hole, waves
would be sent in both directions and would be the same no matter which way the
wave was going in the primary guide. But when there are 7o holes with a separa-
tion space equal to ong-quarter of the guide wavelength, they will make two sources
90° out of phase. Do you remember that we considered in Chapter 29 of Vol. 1 the
interference of the waves from two antennas spaced A/4 apart and excited 90°
out of phase in time? We found that the waves subtract in one direction and add
in the opposite dircction. The same thing will happen here. The wave produced
in the guide CD will be going in the same direction us the wave in AB.

If the wave in the primary puide is travelling from A toward B, there will be
a wave at the output £ of the secondary guide. 11 the wave in the primary guide
goes from B toward A4, there will be a wave going toward the end C of the secondary
guide. This end is equipped with a termination. so that this wave is absorbed and
there is no wave at the output of the coupler.

24-7 Waveguide modes

The wave we have chosen to analyze is a special solution of the field equations.
There are many more. Each solution is called a waveguide “mode.” For example,
our x-dependence of the field was just one-half a cycle ol a sine wave, There s an
equaliy good solution with a full cycle: then the variation of E, with x is as shown
in Fig. 24-14. The k, for such a mode is twice as large, so the cutoff frequency is
much higher. Also, in the wave we studied E has only a y-component, but there
are other modes with more complicated electric flelds. If the electric field has
components only in x and p—so that the total clectric field is always at right
angles to the z-direction—the mode is called a “transverse efectric™ (or TE) mode.
The magnetic field of such modes will always have a z-component. [t turns out
that if £ has a component in the z-direction (along the direction of propagation),
then the magnetic field will always have only transverse components. So such
ficlds are called transverse magnetic (TM) modes. For a rectangulur guide, all
the other modes have a higher cutoff frequency than the simple TE mode we have
described. 1 is, therefore, possible—and usual—to use a guide with a frequency
Just above the cutoff for this Jowest mode but below the cutoff frequency for all
the others, so that just the one mode is propagated. Otherwise. the behavior gets
compiicated and diflicult to control.

24-8 Another way of looking at the guided waves

We want now to show you another way of understanding why a waveguide
attenuates the fields rapidly for frequencies below the cutoff frequency w,. Then
you will have a more “physical” idea of why the behavior changes so drastically
between low and high frequencies. We can do this for the rectangular guide by
analyzing the fields in terms of reflections—or images—in the walls of the guide.
The approach only works for rectangular guides, however; that’s why we started
with the nmore mathematical analysis which works, in principle, for guides of any
shape.

For the mode we have described, the vertical dimension (in y) had no effect,
$0 we can ignore the top and bottom of the guide and imagine that the guide is
extended indcfinitely in the vertical direction. We imagine then that the guide
Just consists of two vertical plates with the separation a.

Let’s say that the source of the fields is a vertical wire placed in the middle of
the guide, with the wire carrying a current that oscillates at the frequency w.
In the absence of the guide walls such a wire would radiate cylindrical waves.
24-10

/D



Now we consider that the guide walls are perfect conductors. Then, just as in
electrostatics, the conditions at the surface will be correct if we add to the field of
the wire the field of one or more suitable image wires. The image idea works just
as well for electrodynamics as it does for electrostatics, provided, of course, that
we also include the retardations. We know that is true because we have often
seen a mirror producing an image of a light source. And a mirror is just a “*perfect”
conductor for electromagnetic waves with optical frequencies.

Now let’s take a horizontal cross section, as shown in Fig. 24-15, where W,
and W, are the two guide walls and 5, is the source wire. We call the direction of
the current in the wire positive. Now if there were only one wall, say W, we could
remove it if we placed an image source (with opposite polarity) at the position
marked §,. But with both walls in place there will also be an image of S, in the
wall W,, which we show as the image S;. This source, too, will have an image in
W 1. which we call §3. Now both §; and S3 will have images in W at the positions
marked S, and Sg. and so on. For our two plane conductors with the source
halfway between, the fields are the same as those produced by an infinite line of
sources, all separated by the distance a. (It is, in fact just what you would see il
you looked at a wire placed halfway between two parallel mirrors.) For the fields
to be zero at the walls, the poluarity of the currents in the images must alternate
from one image to the next. In other words, they oscillate 180° cut of phase.
The waveguide field is, then, just the superposition of the fields of such an infinite
set of line sources.

We know that if we are close to the sources, the field is very much like the
static fields. We considered in Section 7--5 the static field of a grid of line sources
and found that it is like the field of a charged plate except for terms that decrease
exponentiaily with the distance from the grid. Here the average source strength
is zero, because the sign aiternates from one source to the next. Any fields which
exist should fall off exponentially with distance. Close to the source, we see the
field mainly of the nearest source; at large distances, many sources contribute and
their average effect is zero. So now we see why the waveguide below cutoff fre-
quency gives an exponentially decreasing field. At low frequencies, in particular,
the static approximation is good, and it predicts a rapid attenuation of the fields
with distance. :

Now we are faced with the opposite question: Why are waves propagated
at all? That is the mysterious part! The reason is that at high frequencies the
retardation of the fields can introduce additional changes in phase which can cause
the fields of the out-of-phase sources to add instead of cancelling. In fact, in
Chapter 29 of Vol. I we have already studied, just for this problem, the fields
generated by an array of antennas or by an optical grating. There we found that
when several radio antennas are suitably arranged, they can give an interference
pattern that has a strong signal in some direction but no signal in another.

Suppose we go back to Fig. 24-15 and lock at the fields which arrive at a
large distance from the array of image sources. The fields will be strong only in
certain directions which depend on the frequency—only in those directions for
which the fields from all the sources add in phase. At a reasonable distance from
the sources the field propagates in these special directions as plane waves. We have
sketched such a wave in Fig. 24-16, where the solid lines represent the wave crests
and the dashed lines represent the troughs. The wave direction will be the one
for which the difference in the retardation for two neighboring sources to the crest
of a wave corresponds to one-half a period of oscillation. In other words, the
difference between r; and rq in the figure is one-half of the free-space wavelength:

rFa — ry = %f‘
The angle # is then given by
inp —~ Mo,
sing = o (24.33)

There s, of course, another set of waves travelling downward at the symmetric
angle with respect to the array of sources. The complete waveguide field (not too
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Fig. 24-17. The waveguide field can
be viewed as the superposition of two
trains of plane waves.

close to the source) is the superposition of these two sets of waves, as shown in
Fig. 24-17. The actual fields are really like this, of course, only between the two
walls of the waveguide.

At points like 4 and C, the crests of the two wuve patferns coincide, and the
field will have a maximum: at points like B, both waves have their peak negative
value, and the ficld has its minimum (largest negative) value. As time goes on
the field in the guide appears to be travelling along the guide with a wavelength
Mg, which is the distance from A to C. That distance is related to ¢ by

Do,

cos § = n

(24.34)
Using Eq. (24.33) for 4, we get that

ok Ao

Ny = cosd [ - (ho/2a)2 ’

which is just what we found in Eq. (24.19).

Now we see why there is only wave propagation above the cutofl frequency
wq. If the frec-space wavelength is longer than 24, there is no angle where the waves
shown in Fig. 24-16 can appear. The necessary constructive interference appears
suddenly when » drops below 2a, or when w goes above wy = /.

If the frequency is high encugh, there can be two or more possible directions
in which the waves will appear. For our case, this will happen if Ay < 3a. In
general, however, it could also happen when Ay < @ These additional waves
correspond to the higher guide modes we have mentioned.

It has also been made evident by our analysis why the phase velocity of the
guided waves is grealer than ¢ and why this velocity depends on w. As w is changed,
the angle of the free waves of Fig. 24-16 changes, and therefore so does the velocity
along the guide.

Although we have described the guided wave as the superposition of the fields
of an infinite array of line sources, you can see that we would arrive at the same
result if we imagined two sets of free-space waves being continually reflected back
and forth between two perfect mirrors—remembering that a reflection means a
reversal of phase. These sets of reflecting waves would all cancel each other unless
they were going at just the angle @ given in Eq. (24.33). There are many ways of
fooking at the same thing,

(24.35)
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324 The complex index of refraction

We want to look now at the consequences of our result, Eq. (32.33). First,
we notice that « is complex, so the index # is going to be a complex number. What
does that mean? Let’s say that we write # as the sum of a real and an imaginary
part;

Ho= npp — ing, (32.35)

where #;; and n; are real functions of w. We write iy with a minus sign, so that »;
will be a positive quantity in all ordinary optical materials. (In ordinary inactive
materials—that are not, like lasers, light sources themselves—7 is a posilive number,
and that makes the imaginary part of n negative.) Our plane wave of Eq. (32.21)
is written in terms of n as

E.r, — Ene—iw(!‘f?fz/(‘)‘

Writing # as in Eq. (32.35), we would have
E:J: — Eﬂe—w*rqz;‘r:(’ ﬁ'w(ffnnz;'(:)l (3236)

The term ¢™“ %%/ represents a wave travelling with the speed ¢/ny. so n,
represents what we normally think of as the index of refraction. But the amplitude
of this wave is

Ene-—wnjrzfc,

which decreases exponentially with z. A graph of the strength of the clectric field
at some instant as a function of z is shown in Fig. 32-1, for n; =~ np/27. The
imaginary part of the index represents the attenuation of the wave due to the
energy losses in the atomic oscillators, The inrensit ) of the wave is proportional
to the square of the amplitude, so

Intensity o g™ 2wnszle,
This is often written as
Intensity « e,

where 3 = 2wr; /¢ is called the absorpiion coefficient. Thus we have in Eq. (32.33)
not only the theory of the index of refraction of materials, but the theory of their
absorption of light as well.

In what we usually consider to be transparent material, the quantity ¢ /wn,—
which has the dimensions of a length—is quite large in comparison with the
thickness of the material.

32-5 The index of a mixfure

There is another prediction of our theory of the index of refraction that we
can check against experiment. Suppose we consider a mixture of two materials.
The index of the mixture is not the average of the two indexes, but should be
given in terms of the sum of the two pelarizabilities, as in Eq. (32.34). If we ask
about the index of, say, a sugar solution, the total polarizability is the sum of the
polarizability of the water and that of the sugar. Each must, of course, be cal-
culated using for & the number per unit volume of the molecules of the particular
kind. 1n other words, if a given solution has &, molecules of water, whose polariz-
ability is w;, and N, molecules of sucrose (Cy:H;201,), whose polarizability is
a2, we should have that

nt — 1
3 R = N]Ctl + .'Vg(ﬁz. (32'37)

We can use this formula to test our theory against experiment by measuring
the index for various concentrations of sucrose in water. We are making several
assumiptions here, however. Our formula assumes that there is no chemical action
when the sucrose is dissolved and that the disturbances to the individual atomic

32-8
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Refractive index of sucrose solutions,

Data from Handbook
|

Table 32-2

and comparison with predictions of Eq. (32.37).

A | B C D E \ F G ‘
| Moles of Moles of ! w2 — 1 \
Fraction of sucrose density " sucrose! waters ;3 ( s ,;) Nio
by weight \ {gm/cm®) at 20°C per liter, per liter, nt s e \
| Nz2/No N1/Ng |
0 ~ 0.9982 1.333 0 55.5 0.617 0.617
0.30 ‘ 1.1270 1.3811 0.970 438 0.698 0.487
(.50 1.2296 1.4200 1.798 34.15 0,759 0.379 i
0.85 ' 1.4434 1.3033 3.59 12.02 (.886 0.1335
1,00" \ 1,588 \ 1.5577 4.64 0 0.960 0 L
s pure water hgugar crystals _
° gverage (see text) 4 yolecutar weight of sucrose = 342
= molecular weight of water = 18

oscillators are not too different for various concentrations. So our result is certainly
only approximate, Anyway, let’s see how good it is.

We have picked the example of a sugar solution because there is a good table
of measurements of the index of refraction in the Handbook of Chemistry and
Physics and also because sugar is a molecular crystal that goes into solution with-
out ionizing or otherwise changing its chemical state.

We give in the first three columns of Table 32-2 the data from the handbook.
Column A is the percent of sucrose by weight, column B is the measured density
(gm/cm?), and column C is the measured index of refraction for light whose
wavelength is 589.3 millimicrons. For pure sugar we have taken the measured
index of sugar crystals. The crystals are not isotropic, so the measured index is
difTerent along different directions. The handbook gives three values:

n, = 1.5376, ny = 1.5651, ng = 1.5705,

We have taken the average.

Now we could try to compute n for each concentration, but we den’t know
what value to take for o, or az. LeUs test the theory this way: We will assume
that the polarizability of water (« ) is the same at all concentrations and compute
the polarizability of sucrose by using the cxperiment of values for # and solving
Eq. (38.27) for ay. If the theory is correct, we should get the same as for all
concentrations.

First, we need to know ¥ and V! let's express them in terms of Avogadro’s
number, No. Let’s take one liter (1000 em®) for our unit of volume. Then N/Nyis
the weight per liter divided by the gram-moleculur weight. And the weight per
liter is the density (multiplied by 1000 to get grams per liter) times the fractional
weight of either the sucrose or the water. In this way, we get No/Ngand ¥ /N
as in columns D and E of the table.

In column F we have computed 3(n? — 1}/(n* + 2) from the experimental
values of # in column C. For pure water, 3(n% — 1)/(n® + 2) is 0.617, which is
equal to just ¥ . We can then fll in the rest of Column G, since for each row
G/E may be in the same ratio—namely, 0.617:55.5. Subtracting column G from
column F, we get the contribution Noaw of the sucrose, shown in column H.

Dividing these entries by the values of ¥/ in column D, we get the value of

N gars shown in column J.

From our theory we would expect all the values of ¥gay to be the same. They
are not exactly equal, but pretty close. We can conclude that our ideas are fairly
correct, Even more, we find that the polarizability of the sugar molecule doesn’t
seem to depend much on its surroundings-—its polarizability is nearly the same in a
dilute solution as it is in the crystal.
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_ Noag
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0.211 0.213
0.380 0.211
0.752 0.210
0.960 0.207
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32-6 Waves in metals

The theory we have worked out in this chapter for solid materials can also
be upplied to good conductors, like metals, with very little modification. In metals
some of the electrons have no binding force holding them to any particular atom
it 15 these “free”™ electrons which are responsible for the conductivity. There are
other electrons which are bound, and the theory above is dircctly applicuble to
them. Their influence, however, is usually swamped by the effects of the con-
duction electrons. We will consider now only the effects of the free clectrons.

If there is no restoring force on an electron—but still some resistance to its

- motion—ils equation of motion differs from Eq. (32.1) only because the term in

wex is lacking. So all we have to do is set w® == 0 in the rest of our derivations—
except that there is one more difference. The reason that we had to distinguish
between the average field and the local field in a dielectric is that in an insulator
each of the dipoles is fixed in position, so that it hus a definite relationship to the
position of the others. But because the conduction electrons in a metal move
around all over the place, the field on them on the average is just the average field
E. So the correction we made to Eq. (32.5) by using Eq. (32.28} should not be
made for conduction electrons. Therelore the formula for the index of refraction
for metals should look like Eq. (32.27), except with wy set equal to zero, namely,

9
S R AL (32.38)
Mey —= +— 17w

This is only the contribution from the conduction efectrons, which we will assume
is the major term for metals.

Now we even know how to find what value to use for v, because it is related
to the conductivity of the metal. In Chapter 43 of Volume [ we discussed how the
conductivity ol a metal comes from the diffusion of the free electrons through the
crystal. The electrons go on a jagged path from one scattering to the next, and
between scatterings they move freely except for an acceleration due to any average
electric ficld (as shown in Fig. 32-2). We found in Chapter 43 of Volume | that
the average drift velocity is just the acceleration times the average time 7 between
collisions. The acceleration is g.E/m, s0

ok
qeto
o7

(32.39)

Udrift, ==

This formula assumed that E was constant, so that iy, was a steady velocity.
Since there is no average acceleration, the drag force is equal to the applied force.
We have defined ¥ by saying that vmu is the drag force {see Eq. (32.1)], which is
g.E; therefore we have that

v = L (32.40)

Although we cannot easily measure 7 directly, we can determine it by measur-
ing the conductivity of the metal. 1t is found experimentally that an electric field E
in a metal produces a current with the density j proportional to E (for isotropic
malerials):

i = ok
The proportionality constant o is called the conducriviry. This is Just what we expect
from Eq. (32.39) if we set
J o= NgeUase.
Then

o=t (32.41)
So 7-—and therefore v—can be related to the observed electrical conductivity.

Using Egs. (32.40) and (32.41), we can rewrite our formula for the index, Eq.
32-10
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(32.38), in the following form:

(o3 ;"‘ Ep

2 _ . ,
=1+ Tl & iwor) (32.42)
where
1 ma
== ng (32.43)

This is a convenient formula for the index of refraction of metals.

32-7 Low-frequency and high-frequency approximations; the skin depth and the
plasma frequency

Our result, Eq. (32.42), for the index of refraction for metals predicts quite
different characteristics for wave propagation at different frequencies. Let’s first
see what happens at very low [requencies. [f w is small enough, we can approximate
Eq. (32.42) by

n? = i (12.44)
(]
Now, as you can check by taking the square®
'V”V_l' — 1;__1 .
V2
so for low frequencies,
0= o/ legw (1 — 0. (32.45)

The real and imaginary parts of n have the same magnitude. With such a large
imaginary part to a1, the wave is rapidly attenuated in the metal. Referring to
Eq. (32.36), the amplitude of a wave going in the z-direction decreases as

exp[—v gu 2egc? 2] (32.46)
Let’s write this as

—zl5

e ¥

(32.47)

where § is then the distance in which the wave amptitude decreases by the fuctor
¢! = 1/2.72—or roughly onc-third. The amplitude of such a wave as a function
of z is shown in Fig. 32-3. Since electromagnetic waves will penctrate into a
metal only this distance, & is called the skin depth. Tt is given by

5 = V2ot ow. (32.48)

Now what do we mean by “low” frequencies? Looking at Eq. (32.42), we
see that it can be approximated by Eq. (32.44) only if wr is much less than one

and if weg/o is also much less than one—that is, our low-lrequency approximation
appiies when

1
w < =
pu
and

. a
w <& —
L

(32.49)

Let’s see what frequencies these correspond to for a typical metal like copper.
We compute 7 by using Eq. (32.43), and ¢/, by using the meusured conductivity,
We take the foliowing data from a handbook: '
¢ = 5.76 X 107 (ohm-meter)™*,
atomic weight = 63.5 grams,
density = 8.9 grams — cm™7,

Avogadro’s number = 6.02 X 0% (gram atomic weight) ™',

*Or wriling —i = e "7/3; /=i = ¢ = cosmd — isinw/4, which gives the
same result.
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If we assume that there is one free electron per atom, then the number of electrons

per cubic meter is
N = 8.5 X 10%® meter—?,

Using
g. = 1.6 % 1071° coulomb,
€y = 8.85 x 107'2 farad-meter™ !,
m = 9.11 X 1073 kgm,
we get
T =24 X 107 sec,
LI 4.1 X 10'% sec™?,
T
g

it

6.5 X 101% sec™1.

(4]

0

So for frequencies less than about 10'? cycles per second, copper will have the
“low-frequency” behavior we describe (that means for waves whose free-space
wavelength is longer than 0.3 millimeters—very short radio waves!).

For these waves, the skin depth in copper is

5 - 0.028 m2-sec—! _
- 73]

For microwaves of 10,000 megacycles per second (3-cm waves)
8 = 6.7 X 107 cm.

The wave penetrates a very small distance.

We can see from this why in studying cavities (or waveguides) we needed to
worry only about the fields inside the cavity, and not in the metal or outside the
cavity. Also, we see why the losses in a cavity are reduced by a thin plating of
silver or gold. The losses come from the current, which are appreciable only in a
thin layer equal to the skin depth.

Suppose we look now at the index of a metal like copper at high frequencies.
For very high frequencies wr is much greater than one, and Eq. (32.42) is well

approximated by
a

vt (32.50)

nf=1-—

For waves of high frequencies the index of a metal becomes real—and less than
one! This is also evident from Eq. (32.38) if the dissipation term with 7 is neglected,
as can be done for very large . Equation (32.38) gives

2
Ng;
5 ?
méng

(32.51)

o= 1 —

which is, of course, the same as Eq. (32,50). We have seen before the quantity
Nq?/me,, which we called the square of the plasma frequency (Section 7-3):

2

2 qu
wﬂ = —
[y

so we can write Eq. (32.50) or Eq. (32.51) as

wz
Rt =1 - [%2).
w

The plasma frequency is a kind of “critical” frequency.

For @ < w, the index of a metal has an imaginary part, and waves are
attenuated; but for  >> w, the index is real, and the metal becomes transparent.
You know, of course, that metals are reasonably transparent to x-rays. But
some metals are even transparent in the ultraviolet. In Table 32-3 we give for
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several metals the experimental observed wavelength at which they begin to become
transparent. In the second column we give the calculated critical wavelength
Ap = 2mc/w,. Considering that the experimental wavelength is not too well
defined, the fit of the theory is fairly good.

You may wonder why the plasma frequency w, should have anything to do
with the propagation of electromagnetic waves in metals. The plasma frequency
came up in Chapter 7 as the natural frequency of density oscillations of the free
clectrons. (A clump of elecirons is repelled by electric forces, and the inertia of the
electrons leads to an oscillation of density.} So longitudinal plasma waves are
resonant at w,. But we are now talking about transverse electromagnetic waves,
and we have found that transverse waves are absorbed for frequencies below w,,.
(It’s an interesting and »of accidental coincidence.)

Although we have been talking about wave propagation in metals, you ap-
preciate by this time the universality of the phenomena of physics—that it doesn’t
make any difference whether the free electrons are in a metal or whether they are
in the plasma of the ionosphere of the earth, or in the atmosphere of a star. To
understand radio propagation in the ionosphere, we can use the same expressions—
using, of course, the proper values for ¥ and 7. We can see now why long radio
waves are absorbed or reflected by the ionosphere, whereas short waves go right
through. (Short waves must be used for communication with satellites.)

We have talked about the high- and low-frequency extremes for wave propaga-
tion in metals. For the in-between frequencies the full-blown formula of Eq.
(32.42) must be used. In general, the index will have real and imaginary parts;
the wave is attenuated as it propagates into the metal. For very thin layers, metals
are somewhat transparent even at optical frequencies. As an example, special
goggles for people who work around high-temperature furnaces are made by
evaporating a thin layer of gold on glass. The visible light is transmitted fairly
well—with a strong green tinge—but the infrared is strongly absorbed.

Finally, it cannot have escaped the reader that many of these formulas re-
semble in some ways those for the dielectric constant x discussed in Chapter 10,
The dielectric constant x measures the response of the material to a constant field,
that is, for @ = 0. If you look carefully at the definition of # and x you see that
k is simply the limit of 7% as w — 0. Indeed, placing w = 0 and #n* = x in equa-
tions of this chapter will reproduce the equations of the theory of the dielectric
constant of Chapter 11.
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Table 32-3*

Wavelengths below which the metal
becomes transparent

Met;l_!P\ (experimental)

Ap = 2mciag

Li 1550 A
Na 2100

K 3150

' Rb | 3400

1550 A
2090
2870
3220

* From: C. Kittel, Introduction to Solid
State Physics, John Wiley and Sons, Inc.,
New York, 2nd ed., 1956, p. 260.



