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We have, so far, guessed the equations of macroscopic
electrodynamics:

~∇ · ~B = 0 ~∇× ~E +
1
c
∂~B
∂t

= 0. (1)

~∇ · ~D = 4πρ ~∇× ~H − 1
c
∂~D
∂t

=
4π
c
~J. (2)

We had the relations (“constitutive relations")

~D = ~E + 4π~P ~H = ~B − 4π ~M. (3)

Goal here is to understand the microscopic origins of these
equations. We will use a classical language, but this can readily
be translated to quantum mechanics.
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Microscopic equations:

~∇ · ~b = 0 ~∇× ~e +
1
c
∂~b
∂t

= 0. (4)

~∇ · ~e = 4πη ~∇× ~b − 1
c
∂~e
∂t

=
4π
c
~j . (5)

where for this lecture, the lower case denotes the microscopic
quantities.
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Some relevant length scales

:

1 Size of nuclei 10−13 cm
2 Size of atoms 10−8 cm
3 Wavelength of visible light 10−6 cm

So for visible light, for example, wave is roughly constant in
space over a volume containing a million atoms. For, e.g.,
x-rays, wavelengths are smaller than typical atomic dimensions,
so macroscopic description is inappropriate; x-rays resolve
individual atoms.
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Averaging

So it makes sense to average over distances large compared to
atomic sizes. It is not appropriate to average in time, since, e.g.
for light, frequencies are comparable to frequencies of atomic
motion.
Introduce a test function, f (~x), and define, for some quantity
F (~x , t) (e.g. one of the fields):

F(~x , t) ≡ 〈F (~x , t)〉 =

∫
d3x ′f (~x ′)F (~x − ~x ′, t). (6)
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Choice of the test function

Would like isotropic, smooth (so, e.g. in momentum space, it
doesn’t have discontinuities or other irregularities):
Normalize to unity.

f (~x) = (πR2)−3/2e−r2/R2
. (7)

It is clear what this does in coordinate space. What sort of
averaging does it do in momentum space?
Good practice with Fourier transforms.
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Fourier transform of smoothed quantities

We’d like to see that high wave number (short wavelengths) are
smoothed out.

F(~k , t) =

∫
d3x e−i~k ·~x

∫
d3x ′f (~x ′)F (~x − ~x ′, t). (8)

=

∫
d3xe−i~k ·~x

∫
d3x ′f (~x ′) (9)

×
∫

d3k ′
∫

d3k ′′f (~k ′)ei~k ′·~x ′
F (~k ′′, t)ei~k ′′·(~x−~x ′).

Now the ~x and ~x ′ integrations give δ functions:

(2π)6δ(~k − ~k ′′)δ(~k ′ − ~k ′′). (10)
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So the result is
f (~k)F(~k). (11)

It is a useful exercise to calculate the Fourier transform of f .
More generally, we will several times be interested in the
integral:

I(a, ~k) =

∫
d3x ei~k ·~xe−a2x2

. (12)

This is a standard integral which is done by completing the
squares in the exponent:

I(a, ~k) =

∫
d3x e−a2(~x−i

~k
2a2 )2− 1

4
k2

a2 (13)

= π3/2a−3e−
1
4

k2

a2 .
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So
f (~k) =

3
4
√
π

e−
1
4 k2R2

. (14)

This means that for wave lengths large compared to R,

F(~k , t) = F (~k , t) (15)

while for λ� R,
F(~k , t)→ 0. (16)
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Note some useful features of this averaging:
Most important, differentiation and averaging commute:

∂

∂xi
F(~x , t) =

∂

∂xi

∫
d3x ′f (~x ′)F (~x − ~x ′, t) (17)

=

∫
d3x ′f (~x ′)

∂F
∂xi

(~x − ~x ′, t)

= 〈∂F
∂xi
〉.

Clearly also ∂
∂t commutes with averaging.
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So consider, first, the homogeneous equations. Because
differentiation and averaging commute, calling

~E = 〈~e〉 ~B = 〈~b〉 (18)

we have:
~∇ · ~B = 0 ~∇× ~E = −1

c
∂~B
∂t
. (19)
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For the inhomogeneous equations, we have to be more careful.
Consider, first,

~∇ · ~E = 4π〈η(~x , t)〉. (20)

We need to convert the right hand side into something
recognizable.
First, we divide the charge density into a “free" piece and a
bound piece, corresponding to electrons bound in molecules:

η = ηfree + ηbd (21)

where

ηfree(~x , t) =
∑
free

qjδ(~x − ~xj(t)) ηbd(~x , t) =
∑

n

ηn(~x , t). (22)

Here ηn is the microscopic charge density of the n’th molecule:

ηn(~x , t) =
∑
j∈n

qjδ(~x − ~xj(t)). (23)
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For the bound part, we first write:

~xj = ~xn + ~xjn. (24)

Then
〈ηn(~x , t)〉 =

∫
d3x ′f (~x ′)ηn(~x − ~x ′, t) (25)

=
∑

qj

∫
d3x ′f (~x ′)δ(~x − ~x ′ − ~xjn − ~xn)

=
∑
j∈n

qj f (~x − ~xjn − ~xn).

Now we see the virtue of a smooth choice of f . For
R � angstrom, we can Taylor expand f :
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〈ηn(~x , t)〉 =
∑
j∈n

[
f (~x − ~xn)− ~xjn · ~∇f (~x − ~xn)(26)

+
1
2

∑
αβ

(xjn)α(xjn)β
∂2

∂xα∂xβ
f (~x − ~xn) + · · · .

Now ∑
jn

qj = qn;
∑

qj~xjn = ~pn (27)

and the last sum in the brackets above is related to the quadrupole
moment. Dropping this term as small in most circumstances, we have
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〈ηn(~x , t)〉 = qnf (~x − ~xn)− ~pn · ~∇f (~x − ~xn) + . . . ... (28)

This is what we would have obtained from

〈ηn(~x , t)〉 = 〈qnδ(~x − ~xn)〉 − ~∇ · 〈~pnδ(~x − ~xn)〉+ . . . . (29)

(Check!)
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So summing over the molecules

〈η(~x , t)〉 = ρ(~x , t)− ~∇ · ~P(~x , t) + . . . (30)

where

ρ(~x , t) = 〈
∑

j(free)

qjδ(~x − ~xj) +
∑

n

qnδ(~x − ~xn)〉 (31)

~P(~x , t) = 〈
∑

~pnδ(~x − ~xn)〉. (32)
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So we have
~∇ · ~D(~x , t) = ρfree(~x , t) (33)

where
~D(~x , t) = ~E + 4π~P(~x , t). (34)

It is straightforward to carry out this expansion to higher orders
in a/R. This is described in G. Rusasakoff, American Journal of
Physics, 38 (1970) 1188 (a rather pretty article). In this case,
there are further corrections to ~D, e.g.

Dα = Eα + 4πPα − 4π
∑
β

∂Q′αβ
∂β

. (35)

Note that there is no assumption here that the system is static!
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Now for the last of the Maxwell equations. Here, we need
somehow to get ∂~D∂t on the right hand side, with ~D as defined
above (including higher order terms! We’ll content ourselves
with the leading term).
Start, as before, breaking up

~j =~jfree +~jbd . (36)

~jbd =
∑

n

~jn(~x , t). (37)

Again
~jn(~x , t) =

∑
j∈n

qj~vjδ(~x − ~xj). (38)
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Again, take
~xj = ~xjn + ~xn ~vj = ~vjn + ~vj . (39)

So
〈jn(~x , t)〉 =

∑
j∈n

qj(~vjn + ~vn)f (~x − ~xn − ~xjn). (40)

Again, Taylor expand f about ~xn; we’ll stop with the second
term:

〈jn(~x , t)〉 =
∑

qj(~vjn+~vn)f (~x−~xn)−
∑

qj(~vjn+~vn)~xjn · ~∇f (~x−~xn)

(41)
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We want to write these quantities in a more familiar form.∑
qj~vjn =

d
dt

∑
qj~xjn (42)

=
d
dt
~pn.
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Now consider
−

∑
qj(vjn)α(xjn)β (43)

= −1
2

∑
qj((vjn)α(xjn)β − (vjn)β(xjn)α − symmetric term

The first term can be rewritten in terms of the magnetic moment
of the n’th molecule, in a way which is now familiar:

~mn =
1
2c

∑
j

qj(~xjn × ~vjn). (44)
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So we have

〈~jα〉 = 〈~jnαδ(~x−~xn)〉+〈
d
dt
~pnαδ(~x−~xn)〉+cεαβγ∂β〈~mnγδ(~x−~xn)〉+. . . .

(45)
Defining the macroscopic current density:

~J(~x , t) = 〈
∑

j

qj~vjδ(~x − ~xj)〉+ 〈
∑

n

qn~vnδ(~x − ~xn)〉 (46)

and
~M(~x , t) = 〈

∑
n

~mnδ(~x − ~xn)〉 (47)
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(~∇× ~B)α =
4π
c
~Jα + 4π(~∇× ~M)α +

1
c
∂Dα

∂t
. (48)

So calling ~H = ~B − 4π ~M,

~∇× ~H =
4π
c
~J +

1
c
∂~D
∂t
. (49)
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