Some Questions of Units and Connections to the Electromagnetic Spectrum

Physics 214 2011, Electricity and Magnetism

Michael Dine Department of Physics University of California, Santa Cruz

January 2011

ヘロン ヘアン ヘビン ヘビン

э

Physics 214 2011, Electricity and Magnetism Some Questions of Units

Two fundamental constants:

- $c = 3 \times 10^{10}$ cm/sec: relates length to time. Natural to set c = 1 and use same units for both. Similarly energy and momentum.
- 2 $\hbar = 6.58211899 \pm 10^{-22}$ MeV s. Related energy to time. Natural to set $\hbar = 1$. Then energy, mass, momentum have same units. Similarly time, length have (inverse) units.

▲冊 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ● ○ ○ ○ ○ ○

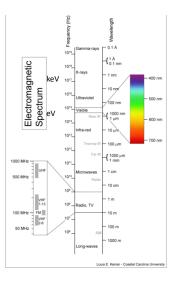
Examples:

- Microwaves: wavelengths mm, cm; frequencies 10¹³ - 10⁹sec⁻¹;
- 2 Visible light: $eV^{-1} \sim 10^{-15}$ sec, 10^{-6} cm.

- **4** γ -rays: MeV GeV⁻¹ ~ 10⁻²¹ 10⁻²⁴ sec.
- **1** fm = size of nucleus = 3×10^{-24} sec.

Conductivities, resistivities, skin depth:

Conductivity is usually quoted in SI units (siemens). In these units, skin depth is:


$$\delta = \frac{1}{\sqrt{\pi\mu_0}} \sqrt{\frac{1}{\sigma\nu}} \tag{1}$$

(四) (日) (日)

3

$$= 503 \text{ mm} \sqrt{\frac{1}{\sigma \nu}}$$

(ν is frequency in Hz) So, for Al, $\sigma = 3.5 \times 10^7$, so for ν in the Gigahertz range, δ is in the μ -m range.

◆□> ◆□> ◆豆> ◆豆> ・豆 ・ のへで

Physics 214 2011, Electricity and Magnetism Some Questions of Units