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Simplified Derivation of Energy Loss Formula

One of the most important problems in experimental physics is
the problem of understanding how particles slow down as they
pass through matter. Consider a massive charged particle (e.g.
a proton or muon) passing through matter. As it passes an
electron, it will be minimally deflected (little momentum transfer)
but it will give significant amounts of energy to the electron. To
start, we will assume that the electron is initially at rest
(essentially the assumption that the collision takes place in a
small time compared to an atomic period; we can check
afterwards if the momentum transferred to the electron is large
compared to that of a typical bound electron).
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Consider from the point of view of the frame of the electron.
Suppose that the heavy particle (we will call it a muon) moves
with velocity v in the x direction; it passes with impact
parameter ~b = bŷ . Then in the electron frame, the electric
fields are (x is the direction of the muons motion; recall we
obtained this formula earlier by boosting the Coulomb field):

E1 =
eγvt

(b2 + γ2v2t2)3/2 (1)
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The net change of the electron momentum in the direction is:

δp2 =

∫ ∞
−∞

dteE2(t)dt . (2)

= e2γb
∫ ∞
−∞

dt
(b2 + γ2v2t2)3/2

=
2e2

bv
.

So, as a function of the impact parameter, we have:

∆E(b) =
(δp)2

2m
=

2e4

mv2b2 . (3)
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This formula, however, is only valid for a limited range of impact
parameters. There is an upper limit on b, bmax, coming from the
requirement that the time over which the field is appreciable be
small compared to 1/ω0, the characteristic time of the atomic
motion. To be precise, in the language of quantum mechanics,
if the time is much longer than this, the field changes
adiabatically from the viewpoint of the bound electron, and no
energy is transferred. This characteristic time, we see from the
form of the field, is

tc ∼
b
γv

(4)

so
bmax =

γv
ω0
. (5)
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There is also a minimum b for which this treatment breaks
down, because we don’t correctly estimate the momentum
transfer with our non-relativistic formula. To estimate this,
consider a head on collision. From the point of view of the
heavy particle rest frame, the electron scatters back, and we
can neglect the heavy particle recoil. The energy transferred to
the electron (in the electron frame – there is essentially no
energy transfer in the massive particle’s rest frame) is:

∆E = γβ(p1 − p2) (6)

≈ 2mγ2β2

This, then, gives a cutoff on b, when

2e4

mb2v2 = 2mγ2v2 (7)

or

bmin =
e2

γmv2 . (8)
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(Note: the picture of the electron bouncing off the muon, with
essentially no muon recall, is valid provide the center of mass
energy is small compared to the muon rest mass; the center of
mass energy is of order

√
mEµ, which in the case of the muon

is small provided the Eµ < 100mµ; the requirement is even
more stringent for protons).
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From this we can compute the energy loss of the particle per
unit length:

dE
dx

= 2πNZ
∫ bmax

bmin

∆E(b)bdb (9)

≈ 4πNZ
e4

mv2 ln(γ2mv3/e2ω0).

Note that this expression is sensitive to the energy of the
particle (γm). So energy loss is often used to give an energy
measurement (momentum being obtained from the curvatures
of tracks in a magnetic field, for example).
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This formula has a number of limitations, however, and requires
significant modifications. Important effects include:

1 quantum mechanics: discrete energy transfers
2 binding effects
3 effects due to coherent scattering off atoms (density effect).
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We can make a simple classical model of bound state effects
which incorporates correctly some of the features of the real
problem by considering our usual favorite, the harmonically
bound charge. Here we have:

~x(ω) = − e
m

~E(ω)

ω2
0 − ω2 − iωΓ

(10)

so we can compute the energy transfer:

∆E =

∫
dt

dE
dt

=

∫
dt~E · ~Jd3x ′ (11)

= −
∫

dte~v · ~E .
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In terms of the Fourier representations:

(~x(t), ~E(t)) =

∫
dω
2π

e−iωt (~x(ω), ~E(ω)) (12)

∆E = 2eRe
∫ ∞

0
(iω~x(ω · ~E∗(ω)dω. (13)
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Substituting our expression for ~x , gives an expression which
can be integrated in the limit of small Γ (little dissipation; in the
quantum mechanical context, this means long lifetime or
narrow width):

∆E =
e2

m

∫ ∞
0
|E(ω)|2 2ω2Γ

[(ω2
0 − ω2)2 + ω2Γ2]

dω (14)

≈ e2

m
|E(ω0)|2

∫ ∞
0

x2dx
(x2 − ω2

0/Γ2)2 + x2

=
πe2

m
|E(ω0)|2.

Exercise: Verify the equations above.
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Now one just needs to compute the Fourier transform:

E2(ω) = ebγ
∫

eiωtdt
(b2 + γ2v2t2)3/2 . (15)

Calling x = γvt/b, the integral can be rewritten:

e
∫ ∞
−∞

eiωbx/γv

(1 + x2)3/2 dx = e
∫ ∞
−∞

eiξx

(1 + x2)3/2 (16)

where
ξ = ωb/γv = b/bmax . (17)

When ξ � 1, this is exactly the integral we encountered
previously. When your text encounters integrals like this, it
rewrites them in terms of modified Bessel functions.
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For large ξ, the integral can be estimated. Note that the
integrand has branch cuts at x = ±i . One can view this as an
integral in the complex plane, and deform so it encircles the
branch cuts. This permits a demonstration that the integral dies
exponentially as e−ξ.
In any case, a more complete analysis including quantum
mechanical effects, due originally to Bethe (the simple classical
analysis is due to Bohr) yields an expression:

dE
dx

= 4πNZz2 e4

mv2

[
ln(

zγ2mv2

~ω
)− v2/c2

]
(18)

where ze is the charge of the heavy particle (it is easy to redo
our formulas allowing for a particle of different charge, such as
an α particle or a hypothetical particle of fractional charge (I
once was interested in particles of charge 1/7). You should
study figure in Jackson; note initial decrease with β, then
growth and plateau.
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Another Derivation, Following Landau and
Lifschitz

Landau and Lifschitz (in Electrodynamics of Continuous Media,
on reserve) suggest a different strategy. Consider the force on
the moving particle due to its own field. To make sense of this
notion, subtract off the corresponding expression in vacuum
(ε = 1).
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We’ll just do this for the non-relativistic case. With

ρ(~x , t) = eδ(~r − ~vt) (19)

we can solve for the Fourier transform (in space) of φ. We have,
first

ρ(~k , t) = e
∫

d3rδ(~r − ~vt)e−i~k ·~r (20)

= ee−i~k ·~vt .

So
φ(~k , t) =

4πe

k2ε(~k · ~v)
e−it~v ·~k . (21)
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In the non-relativistic limit, we have:

~E(~k) = − 4πie~k

k2ε(~k · ~v)
e−it~v ·~k (22)

and
~E(~r) =

∫
~E(~k)ei~k ·~r d3k

(2π)3 . (23)
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Now the exponential here (remember ~r = ~vt is the position of
the particle) cancels the exponential in ~E(~k), and we are left
with:

~F = −4πie2
∫ ~kd3k

(2π)3k2ε(~k · ~v)
(24)

Now change variables. Call kxv = ω, q =
√

k2
y + k2

z . Evaluate
F = Fx :

F =
ie2

π

∫ ∞
−∞

dω
∫ q0

0

qωdqdω
ε(ω)(q2v2 + ω2)

. (25)

q0 we expect to be of order 1/bmin. The q integral is
elementary, giving:

F =
ie2

πv2

∫ ∞
−∞

ω
1
ε(ω)

ln(q0v/ω)dω. (26)
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Now we take my favorite model for ε(ω):

ε(ω) = 1 +
Ne2

m
1

ω2
0 − ω2 − iωγ

(27)

so

1
ε
− 1 =

Ne2

m(ω2
0 − ω2 − iωγ)

× 1

1 + Ne2

m(ω2
0−ω2−iωγ)

. (28)

So F can be studied as a contour integral (in the second factor
of the expresson. The integrand (i.e. the numerator of the
equation above) has poles just above and just below the real
axis, for small γ.
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You should check these are at:

ω ≈ ω0 −
iγ
2

ω = −ω0 + i
γ

2
. (29)

Doing the contour integral, and closing above, gives

F =
e2

πv2 Ne4/m ln(v3/ω0e2) (30)

in agreement with our earlier results. While this may appear to
be sleight of hand, it has similar assumptions as in the earlier
analysis. In particular, the cutoff bmax arose from requiring that
the disturbance not be adiabatic. In quantum mechanics, if the
process is not adiabatic, there are transitions between states,
and one expects the width (γ) to be important. Note that it
actually cancels out of the final answer, but plays a role in the
intermediate stages of the computation.
Exercise: Starting from the Poisson equation in momentum
space, verify the sequence of equations above leading to
equation 30. You should feel free to critique the derivation.
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Density Effect and Cherenkov Radiation

A further modification is important at high densities. Here the
issue is that the particle scatters off of several electrons at
once. The atom responds to the field of the passing particle,
modifying the field. This is best described in the language of
dielectrics. The derivation below has much in common with the
derivation of the basic energy loss formula of the previous
section.
In Fourier space (I’ll adopt Jackson’s convention for the Fourier
transformation) we have the equations:

[k2 − ω2

c2 ε(ω)]Φ(~k , ω) =
4π
ε(ω)

ρ(~k , ω) (31)

[k2 − ω2

c2 ε(ω)]~A(~k , ω) = 4π~J(~k , ω) (32)
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Fourier transforming ρ and ~J for the charged particle: (We
follow Jackson’s convention for Fourier transforms,

F (~x , t) =
1

(2π)2

∫
d3k

∫
dωF (~k , ω)ei~k ·~k−iωt (33)

which is not my preference). Then

ρ(~x , t) = eδ(~x − ~vt) ~J(~x , t) = ~vρ(~x , t). (34)

ρ(~k , ω) =
e

2π
δ(ω − ~k · ~v) ~J(~k , ω) = ~vρ(~k , ω). (35)
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So we can immediately write the potentials (in Fourier space,
the problem is algebraic):

~Φ(~k , ω) =
2e
ε(ω)

δ(ω − ~k · ~v)

k2 − ω2

c2 ε(ω)
(36)

and
~A(~k , ω) = ε(ω)

~v
c

Φ(~k , ω). (37)

The electric and magnetic fields are relatively simple in
momentum space:

~E(~k , ω) = i
[
ωε(ω)

c
− ~k

]
Φ(~k , ω) (38)

and
~B(~k , ω) = iε(ω)~k ×

~v
c

Φ(~k , ω) (39)
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To determine the energy loss:

∆E = −e
∫ ∞
−∞

~v · ~Edt = 2eRe
∫ ∞

0
iω~x(ω) · ~E∗(ω)dω. (40)

~E is the Fourier transform of ~E with respect to time at the
location ~x ; this is a distance b from the trajectory of the charged
projectile, i.e.

~E(ω) =
1

(2π)3/2

∫
d3k ~E(~k , ω)eibk3 . (41)
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This integral can be expressed in terms of modified Bessel
functions, but the asymptotic behavior for large b can be
studied using the contour integral methods we used above. The
final result is:

dE
dx

=
(e)2ω2

p

c2 ln(1.123c/aωp). (42)

Here ω2
p = 4πNZe2

m . (See p. 636 of Jackson for a graphical
description; the density effect tends to decrease the energy
loss at low density).
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Cherenkov Radiation

A very interesting effect associated with the non-trivial index of
refraction. A particle moving at faster than the speed of light in
a medium emits radiation (even without acceleration) in a cone
of a characteristic size.
The cone is easy to understand from the formulas we have
written above. From our expressions for Φ and ~A, we see that

kzv = ω (43)

this is
kv cos θ = k/n (44)

or
cos θ = c/nv (45)

(n = n(ω) is a function of frequency).
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To actually verify that there is emission requires using our
previous formulas for the fields and the energy loss. The result
can be written:

dE
dω

=
e2

c2

(
1− c2

v2n2

)
ωdω. (46)

Note, in particular, that the rate grows with ω. This is related to
the blue light observed in nuclear reactor cooling water.
Cherenkov radiation, because of the sensitivity of the cone to
the velocity, is an important particle detection technique.
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We can derive the energy loss by a technique similar to that we
used previously. Using our expression for the field, Ex , as the
Fourier integral of ~E(~k), we can write

F = eEz =
ie2

π

∫ ∞
−∞

∫ ∞
0

(
1/v2 − ε/c2)ωqdqdω[

q2 + ω2
(
1/v2 − ε/c2

)] (47)

where we have made the same substitutions as before. Again,
we write as a contour integral. We’ll actually do the contour
integral as an integral over q.
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Write

F =
∑ ie2

π
ε

∫ ∞
0

dωω
∫ ∞

0

(
1/v2 − ε/c2)ωqdqdω[

q2 + ω2
(
1/v2 − ε/c2

)] (48)

where the sum runs over ω = ±|ω| (note the integration limits
on ω). Call the expression in the denominator, ξ:

ξ = q2 + ω2
(

1/v2 − ε/c2
)

(49)

Now use the fact that ε is complex (see our simple model), with
a small imaginary part, which is positive for ω > 0, negative for
ω < 0. So the sum of the two integrals,

∫ dξ
ξ , yields a line

passing above and below the pole at the origin, so giving 2πi .
This immediately gives the expression above for dF/dω.
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Exercise: Verify the contour integral manipulations above.
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