
Physics 214. Electricity and Magnetism Professor Dine

Winter 2010: FINAL EXAM

Do 5 of 6 Problems. Sixth will be graded for extra credit.

Problem 1
Suppose ~x(t), ~E(t) have Fourier transforms:

~x(t) =
1√
2π

∫ ∞
−∞

e−iωt~x(ω)dω ~E(t) =
1√
2π

∫ ∞
−∞

e−iωt ~E(ω)dω (1)

a. What does the reality of ~x and ~E say about ~x(ω), ~E(ω).

Solution: Just use ~x = ~x∗, and substitute the Fourier transform on each side. ~x(ω) = −~x∗(−ω),
similarly for ~E.
b. Write an expression for ∫

~x(t) · ~E(t)dt (2)

as an integral over ω.

Solution:
Simply plug in the Fourier transforms for each field, being careful to remember that one needs

a separate (dummy) integration variable for ~x and ~E:

1
2π

∫
dtdωdω′ei(ω+ω′)t~x(ω) · ~E(ω′) (3)

The time integral is δ(ω + ω′), so we obtain:∫
dω~x(ω) · ~E∗(ω). (4)

(Note that with the convention for 2π’s here, there are no 2π’s in this expression).

Problem 2

The Stress Tensor

a. Compute the 00, 0i and ij components of the stress tensor:

Tµν =
1

4π
(FµλF ν

λ +
1
4
gµνFαβF

αβ) (5)

Solution: These can be found in Jackson, p. 609. The main thing to be careful about is that
FijF

ij = 2 ~B2. On has (12.114):

T 00 =
1

8π
( ~E2 + ~B2) T 0i =

1
4π

( ~E × ~B)i T ij = − 1
4π

[
EiEj +BiBj −

1
2
δij(E2 +B2)

]
(6)

b. Show that the ν = i component of the equation

∂µT
µν = 0 (7)



expresses the conservation of the momentum of the electromagnetic field in free space. (You can
use your knowledge of the Poynting vector and the energy density of the electromagnetic field from
last quarter).

Solution: Here just integrate the equation of a volume, V , and use Gauss’s theorem to write,
taking the ν = i component of the equation as an example:

d

dt

∫
V
d3xT 0i = −

∫
S
d2anjT

ij (8)

so we have a conservation law for each component of Pµ =
∫
d3xT 0µ.

c. Evaluate the components of the momentum flux and Tij for a linearly polarized wave moving
along the z axis. Discuss.

Solution: Here the main point is that one doesn’t expect momentum flow in any of the directions,
for a plane wave. So consider, e.g., a wave moving along the z axis and with electric field along the
x axis. The B field then has the same magnitude, and is oriented along the y axis. It is easy to see
that in fact T ij vanishes in all of the directions.

Problem 3

Relativistic kinematics:

a. The center of mass energy of the LHC, when it is finally working properly, should be 14
TeV (14, 000 GeV). What would be the energy required of a fixed target machine (one proton of
momentum p incident on another at rest) in order to have the same center of mass energy. You
can approximate the rest energy of the proton as 1 GeV.

Solution: Here we use that:

E2
cm = (p1 + p2)2 = 2m2 + 2p1 · p2 (9)

≈ 2p×m

so
p ≈ 108 GeV (10)

b. Cosmic rays of sufficiently high energy scattering off the cosmic microwave background photons
(energy 10−4 eV), can produce pi mesons (energy 130 MeV ). These rays cannot reach the other.
Consider the case of cosmic ray photons. What is the energy cutoff (known as the GKZ cutoff).

Solution: Now we want:

m2
π = (pcr + pcmb)2 = 2pcr · pcmb ≈ 4× 10−13p. (11)

So
p ≈ 1010 GeV. (12)

To get some sense what the data shows, see the particle data group review of cosmic rays:
http://pdg.lbl.gov/2009/reviews/rpp2009-rev-cosmic-rays.pdf. You can find plots showing evidence
for the GZK cutoff. A few years ago, there was datsa from one experiment, as explained there,
which suggested that there were significant numbers of events above the cutoff. This was soon
contradicted by another experiment, and by continuing work on the first (the issue was probably
associated with questions of measuring the energy; because of the very rapid fall off of the cos-
mic ray flux, small errors in the energy measurement translate into appreciable differences in the
number of events).

Problem 4



Radiation

A scalar field obeys the wave equation with a source:(
~∇2 − ∂2

∂t2

)
φ(~x, t) = ρ(~x, t). (13)

a. Suppose that ρ is localized in space. Develop a moment expansion for φ, at fixed frequency, using
the Green’s function for the Helmholtz equation (below). Discuss the behavior in the “intermediate
zone” and the “radiation zone”.

Solution: The scalar field provides a much simpler model for the multipole radiation problem
discussed in chapter 9. It has the same features, without so many indices. Here one proceeds
just as in chapter 4, writing the solution of the Helmholtz equation, now, instead of the Laplace
equation. As there, in both of the regions which concern us, r< is |~x′|, and r> = r. In the
intermediate zone, the result is exactly as in the multipole expansion. In particular, using the
short distance expansions of j` and h` in both regimes, one has precisely the same formulas (the
(2`−1)!!/(2`+ 1)!! = 1

2`+1 just gives exactly the factor in the static definitions, except that there is

now a factor of 1/k−`). At large distances, one gets the moments times factors of e
ikr
r and relative

factors of k−`. So the large distance expansion is in powers of d/λ.
b. Suppose that the energy flux is

1
4π

(∂iφ∂0φ). (14)

Suppose that the lowest order ` = 0 moment of ρ vanishes. Compute the energy radiated from the
` = 1,m = 0 moment.

Solution: The analog of the pointing vector is

1
8π

(∂iφ∗ωφ) (15)

We just need the fact that the ` = 1,m = 0 mode is like polarization along the z axis; φ ∝ cos θ e
ikr

r .
The derivative along the z axis gives, writing cos(θ) = z/r, and noting that we better take the
derivative to act on the exponential factor, an additional factor of r̂i, so when we dot with r2ẑ, we
are left with cos2 θ, which can readily be integrated over dΩ.
Problem 5

Lienard-Wiechart Potentials:

a. Derive the Lienard-Weichart expression for A0 = φ,

φ(~x, t) =
∫
d3x′dt′

1
|~x− ~x′|

δ(t− t′ − |~x− ~x′|)δ(~x− ~x0(t′)) (16)

Solution: This is in the handout.
b. In our discussion of these potentials and the fields which arise from them we needed

∂itret = n̂i(1− n̂ · ~v)−1 (17)

where n̂ = ~R
R . Derive this.

Solution: This is in the handout.
c. Consider a particle moving along the x axis with velocity v. Take, as in Jackson, the observation
point at x = 0, y = 0, z = b at time t. Determine tret as a function of t and b, and verify equation
17 above.



Solution: The solution for tret is given in the handout:
It is straightforward algebra to differentiate with respect to b (the derivative with respect to

other coordinates vanishes, by symmetry) and verify the formula. The manipulations are again as
in the handout. From

R− ~v · ~R = γ−2
√
b2γ−2 + v2t2 (18)

and tret = γ2t−
√
b2γ−2 + v2t2. So

∂tret
∂y

=
∂tret
∂b

= − bγ−2√
b2γ−2 + v2t2

=
Ri

R− ~v · ~R
. (19)

Problem 6

Energy Loss in Materials:

Consider a scalar field, which obeys an equation similar to the electric and magnetic fields in a
medium. In particular, for a slowly moving particle, suppose

∇2φ = −4πρ/ε(ω). (20)

a. For ρ(~x, t) = gδ(~x− ~vt) compute ρ(~k, ω).

Solution: From the definition of the Fourier transform,

ρ(~k, ω) =
1

(2π)2

∫
d3xdteiωte−i

~k·~xgδ(~x− ~vt) (21)

=
1

(2π)2

∫
dteiωt−i

~k·~vt

In lecture, at this stage, we simply identified ω with ~x · ~v, but here we can do the integral over t,
giving

1
(2π)

δ(ω − ~v · ~k). (22)

b. Solve for φ as a function of ~k, ω.

Solution: This part is easy. In momentum space we have:

(−k2φ) = gδ (23)

Useful formulae

1. Green’s function for the Helmholtz equation:

G(~x, ~x′) = ik
∑
`,m

j`(r<)h(1)
` (r>)Y`m(Ω′)Y ∗`m(Ω).

At short distances, j`(x) = x`

(2`+1)!! ;h
(1)
` = i (2`−1)!!

x`+1 , while at large distances, h(1)
` =

(−i)`+1 eix

x .

2. 1
1+ε ≈ 1− ε.

3. Lorentz transformation: x′ = γ(x+ vt) t′ = γ(t+ vx)



4. Maxwell’s Equations in vacuum (Rationalized MKS):

~∇ · ~E =
ρ

εo
~∇ · ~B = 0

~∇× ~E = −∂
~B

∂t
~∇× ~B = µo ~J + µoεo

∂ ~E

∂t

5. Maxwell’s Equations in vacuum (Gaussian):

~∇ · ~E = 4πρ ~∇ · ~B = 0

~∇× ~E = −∂
~B

∂t
~∇× ~B = 4π ~J +

∂ ~E

∂t

6.
~A× ( ~B × ~C) = ~B( ~A · ~C)− ~C( ~A · ~B).

7.
~∇× (~∇× ~V ) = ~∇(~∇ · ~V )− ~∇(~∇2~V ).

εijkεklm = δilδjm − δimδjl

8. Representation of Delta Function:

δ(t) =
1

2π

∫
dωe−iωt

9. A convention for Fourier transforms:

f(t) =
1√
2π

∫
dωe−iωtf(ω)

f(ω) =
1√
2π

∫
dteiωtf(ω)

10. Energy density of the electromagnetic field:

u =
c

4π
( ~E2 + ~B2)

11. Poynting vector:
~S =

c

8π
~E × ~B

12. Electric, magnetic fields for dipole radiation:

~B = − 1
4π

eikr

r
n̂× d2~p

dt2

~E = ~B × ~n


