
Physics 214. Electricity and Magnetism. Professor Dine

Winter, 2011. Homework Set 1. Solutions.

SOLUTIONS

1. Work out the form of the transverse fields for TE case. Discuss the boundary conditions.

Solution: This is basically described in your text and is a small modification of the lecture
material. Start with Jackson’s equations 8.23, 8.24. For TE, we have Ez = 0. So

∂ ~Et
∂z

+ iωẑ × ~Bt = 0
∂ ~Bt
∂z
− iεωẑ × ~Bt = ~∇tBz. (1)

From the first of these equations, noting the eikz z-dependence, we have, taking the cross
product with ẑ and using the triple product identity:

ikẑ × ~Et − iω ~Bt = 0. (2)

or
ẑ × ~Et =

ω

k
~Bt. (3)

So, substituting in the second of the two equations in ??, gives

ik ~Bt − iε
ω2

k
~Bt = ~∇tBz (4)

or
~Bt = k

~∇tBz
εω2 − k2

. (5)

From this, ~Et is easily constructed using the first of equations ??.

2. Jackson 8.1

Solution:

a) We simply compute the force on the current near the surface of the conductor due to the
fields. The force per unit area is:

~P =
∫
dz ~B × ~J =

1
µc

∫
dz ~H × ~J (6)

= µc

∫
dzRe( ~H0e

−z(1−i)/δ+−iωt)
1
δ

Re(1− i)(n̂× ~H0)e−z(1−i)/δ−iωt).

Here we have used the expressions we derived for the current; we have also dropped terms in
the exponents involving kz, since k � δ. We need to integrate and time average. Rather than
guess, we can simply use Re z = z+z∗

2 . Then, when we do the integrals over z on the separate
terms, the 1 − i factors cancel out, and we just obtain a factor of δ/2. In more detail, note
that when we average over time, we only care about terms where the e−iωt cancels against the
eiωt terms. Correspondingly, the −iz/δ terms cancel out. The factor 1− i then just leaves a
1, after taking the real part. The integral over e−2z/δ gives a factor of δ/2, and the remaining



1/2 comes from the factor of 1/4 (from taking the real parts) times the two from the two
terms where the e−iωt factors cancel out.

b) Now consider a plane wave at normal incidence. Because the wave is transverse, both ~E
and ~B are parallel to the plane. By the boundary conditions for ~E, the tangential components
vanish. So if we study the stress tensor (eqn. 6.120) we have that the pressure is

Tzz =
1
2
µ ~H2 (7)

which becomes the equation above, after time averaging.

c) Here, we just note that the time averaged field-squared is 1/2 the peak field-squared.

3. Jackson 8.2

Solution:

a) ~∇t × ~E = 0 (since Ez = Bz = 0), and ~∇t · ~E = 0. So write

E = −~∇tφ

and
= −∇2

tφ = 0

For the two dimensional geometry, this is a familiar elementary physics problem; the electric
field points radially,

~E = −Ar̂
r

and
φ = A ln(r)

Now
~B =
√
µεẑ × ~E = A

√
µε
ẑ × r̂
r

.

So to obtain the energy flow:

ẑ · ~S =
µ

2
A2√µεẑ ·

(
(ẑ × r̂)× r̂

r2

)
(8)

=
A2µ3/2ε1/2

2r2
.

Now to get the total flow, we need to integrate over the cross section of the guide. This is
trivial, noting

∫
d2a =

∫ 2π
0 dφ

∫ b
a drr. So

P =
A2µ3/2ε1/2

2
(2π) ln(b/a). (9)

We determine the constant A from

~H(a) = Aµ1/2ε1/2
ẑ × r̂
a

= ~H0. (10)

So
A =

H0a√
µε

and

P = |H0|2a2

√
µ

ε
π ln(b/a). (11)



b) To obtain the attenuation, we need to determine the loss per unit length, by integrating,
again, over the cross sectional surface of the guide. This is:

dP

dz
=
µωδ

4

[∫
r=a

rdφ|H|2 +
∫
r=b

rdφ|H|2
]

(12)

=
µωδ

4
|H0|2a2

µ2
2π(a−1 + b−1).

So the attenuation coefficient is:

γ =
1

2P
dP

dz
=

µωδε1/2

4µ1/2 ln(b/a)
(a−1 + b−1). (13)

Using ω = 2/(µσδ2), we have

γ =
ε1/2

2µ1/2δσ

a−1 + b−1

ln(b/a)
. (14)

c) We need the current, say, at b. This is:

n̂× Ĥ = A

√
ε

µ

r̂ × (ẑ × r̂)
b

(15)

=
Aµ−1/2ε1/2

b
ẑ.

But we need to integrate this over the cross section; this gives an extra factor of 2πb, so

Z =
ln(b/a)

2π

√
µ

ε
. (16)

d) Resistance is similar to the previous problem.

∆V = IR (17)

The change in V per unit length is:
dV

d`
= φ0γ (18)

while the current is I = 2πA
√
ε/µ. φ = ln(b/a)A, so

R =
1

2πσδ

(
1
a

+
1
b

)
. (19)

4.

Jackson 8.7, parts a and c (you’ll need to do part b to do c, but you should be able to make
this a bit simpler if you work in the h� a limit).

Solution: As in all of our wave guide problems, we have an equation, which follows from the wave
equation, of the form:

(∇2 + γ2)ψ = 0. (20)

However, in this problem, rather than start with ψ = Er or Br, it is convenient, as in the text, to
study TM modes (Br = 0), and to write an expansion in spherical harmonics (note the spherical
symmetry of the problem – the equation separates nicely in spherical coordinates) for Bφ. In



particular, looking at the equation for the curl in spherical coordinates in the back of your text, we
have

Eθ = − i

ωr

∂

∂r
(rBφ) Er =

i

ωr sin θ
∂

∂θ
(sin θBφ). (21)

So we readily read off the components of ~E (Eφ, Bθ = 0) from knowledge of Bφ. It is also simple
to impose the boundary condition that tangential E (Eθ) vanish. Writing

Bφ =
∑

Y`m
u`(ωr)
r

(22)

the requirement Eθ = 0 at the boundary becomes

∂u`
∂r
|r=a,b = 0. (23)

It is a simple matter to write the transcendental equation for the frequencies. u` is a linear
combination of r times spherical Bessel functions. To write things compactly, call A`(r) = rj`,
B`(r) = rj`(r) where j` and n` are the spherical Bessel and Neuman functions,

u` = αA` + βB` (24)

then studying the boundary condition at a and b we have

A′`(kb)/A
′
`(ka) = B′`(kb)/B

′
`(ka) (25)

Now consider the case ` = 1. Then we can look up j1, n1.

j1 =
sinx
x2
− cosx

x
n1 = −cosx

x2
− sinx

x
(26)

We are interested in a, b � h, and the argument of the Bessel function large. So let’s write
expressions for the derivatives in the limit of large x:

A′1(kr) ≈ k(sin kr +
cos kr
kr

) B′1(kr) ≈ k(− cos kr +
sin kr
kr

) . (27)

Here we have dropped terms down by additional powers of 1/r, i.e. we have only differentiated the
cosines and sines in the numerators. At lowest order, then, we have

sin(ka) cos(kb)− sin(kb) cos(ka) = 0 (28)

or sin k(a − b) = 0, and k = nπ/h. At next order, write k = nπ/h + ∆k, where ∆k is, by
assumption, order 1/a. Then we have, keeping terms up to the next order in 1/a, 1/b (after googling
trigonometric identities, and replacing 1/b by 1/a in the denominators in our expressions
for A1 and B1 above)

− sin k(a− b)− cos k(a− b)
ka

(29)

≈ − sin(k(a− b)−∆k(a− b) cos k(a− b)− cos k(a− b)
ka

= 0

or
∆k =

2
ahk

=
1
nπa

. (30)


