
Physics 213. Electricity and Magnetism. Professor Dine

Winter, 2011. Homework Set 3. Solutions

Problem numbers refer to your textbook.

1. 11.19

Solution:

a. In the rest frame of the decaying particle, ~p1 = −~p2, so p1 = p2. Calling P the four
momentum of the decaying particle, in the rest frame,

P = (M,~0) p1 = (E1, ~p) p2 = (E2,−~p) (1)

so squaring both sides of the equation of energy-momentum conservation

p2 = P − p1 (2)

gives (using P 2 = M2, p2
1 = m2

1, p1 · P = E1M)

m2
2 = M2 +m2

1 − 2E1M (3)

or

E1 =
M2 +m2

1 −m2
2

2M
. (4)

Clearly we can obtain E2 similarly.

b. Kinetic energy:

T1 = E1 −m1 =
M2 +m1 −m2

2 − 2m1M

2M
(5)

This can be compared with Jackson’s expression, which can be written as:

T1 = (M −m1 −m2)
(

2M − 2m1 −M +m1 +m2

2M

)
(6)

which, with a couple lines of algebra, is easily seen to be the same as our expression above.

c. This exercise illustrates the utility of units with c = 1. Indeed, Jackson expresses masses
in MeV , which are energy units. Here one can plug in. Let’s calculate the neutrino’s mo-
mentum first. Since we can treat the neutrino mass as negligible, its energy is the same as
its momentum. From our formula above, this is:

Eν = pν =
139.62 − 105.72

2139.6
= 29.9MeV. (7)

This is also the momentum of the muon, which you see is not terribly relativistic. You can
readily calculate the energy of the muon, and its kinetic energy.

As an aside, it should be noted that a small fraction of the time, the pion decays to an
electron and an electron neutrino. In this problem, one can neglect the mass of the electron,
as well, to a good approximation, and the momenta of the outgoing products is half the mass
of the pion, or about 70 MeV. The electron is highly relativistic. Understanding why the pion
decays rarely to electrons was an important clue to the nature of the weak interaction.



2. 11.20

Solution:

a.
M2 = (p1 + p2)2 (8)

(since pΛ = p1 + p2)
= p2

1 + p2
2 + 2p1 · p2

= m2
1 +m2

2 + 2E1E2 − 2p1 · p2

= m2
1 +m2

2 + 2E1E2 − 2p1p1 cos(θ).

b.
γ =

10 GeV
1.115GeV

≈ 9. (9)

The track length is then

` ≈ γτc ≈ 9× 2.9× 10−10 × 3× 1010cm/sec ≈ 80 cm (10)

(yes, I can put in the factors of c when I need them!).

For the opening angle, we will content ourselves with a rough estimate. If in the cm, the
angle relative to the beam angle of the momentum of one of the outgoing particles is θ, we
can find the angle in the lab by Lorentz transforming the momenta to the lab frame.

tan θ1 =
py
px
≈

p′y
γ(p′x + E′1)

(11)

p sin θ
p cos θ + E1

1
γ

Since γ is large, tan θ1 ≈ θ1. Now we can do the same thing for θ2; the opening angle is
θ1 + θ2,

θ1 + θ2 ≈
p sin θ
γ

(
1

p cos θ + E1
+

1
p cos θ + E2

)
. (12)

This is maximal for θ = π
2 , so the opening angle is roughly

θ1 + θ2 =
p

γ
(
E1 + E2

E1E2
) (13)

=
pM

γE1E2
.

Now roughly Eπ ≈ p, En ≈M , so

θ1 + θ2 ≈
1
γ
≈ 1

9
.

3. 12.5

Solution:

a. For | ~E| < | ~B|,

~v =
~E × ~B

~B2
(14)



which, in the case ~E = Ex̂, ~B = Bŷ, corresponds to

~B =
E

B
ẑ. (15)

Substituting in the Lorentz transformation, as a check, one sees immediately that

E′z = 0 ~E⊥ = γ( ~E + +E(ẑ + ŷ)) = 0, (16)

while
B⊥ = γ( ~B − ~v × ~E) (17)

= γ(Bŷ − E2

B
ŷ)

= γ

(
B2 − E2

B

)
ŷ.

Now γ−2 = 1− v2 = B2−E2

B2 so
B′ =

√
B2 − E2ŷ. (18)

With a convenient choice of time origin, one has the solution:

~x′(t′) = ŷvyt
′ + x̂′R′ cos(ωt′) + ẑR′ sin(ωt′) (19)

Now we can transform back to the lab frame. We can write things in terms of t in this frame,
but since our interest is in parameterizing the trajectory of the particles, we will leave t′ in
the arguments of the appropriate functions. So

~x = ẑγ(R′ sin(ωt′) + vt′) + ŷvyt
′ + x̂R′ cos(ωt′). (20)

Note, for example, that we now have motion with drift velocity in the y and z directions.

b. This is similar, except now we have to use the solution we developed in class for motion
in a constant electric field.

4. 12.14

Solution:

a. This we did in class. The Euler-Lagrange equations are:

∂µ
δL

δ∂µAν
=

δL

δAν
(21)

The right hand side is just 1
c j
ν . The left hand side is

∂µ

(
− 1

4π
∂µAν

)
= −∂2Aν (22)

so the result is Maxwell’s equations in Lorentz gauge.

b. To see that the two actions differ by a total divergence, note that

F 2
µν = 2Fµν∂µAν (23)

due to the antisymmetry of F . This is

2∂µAν∂µAν − 2∂νAµ∂µAν (24)



The first term is what we seek (the first term in the ”alternative lagrangian”. The second
vanishes, as we noted in class, if we integrate by parts. This is the same statement that that
it can be written as a total derivative:

∂νAµ∂
µAν = ∂ν(Aµ∂µAν) (25)

where the equivalence follows because (for non-singular A – no monopole) ∂νAν vanishes in
Lorentz gauge.


