
Physics 214. Electricity and Magnetism. Professor Dine

Winter, 2011. Homework Set 5. Solutions

1. Determine the cross section for scattering of a linearly polarized wave by a charge carrying
out small vibrations under the influence of an elastic force (i.e. an oscillator).

Solution: This is similar to the case of the free particle we studied in class. Again, we
suppose that the wavelength is long, so at the position of the particle we can write:

~E = ~E0e
−iωt (1)

Then the solution for ~x is:

~x =
1

(ω2 − ω2
0) + iγω

e ~E0e
−iωt + transients (2)

So we can immediately read off the electric dipole moment:

~p =
e2 ~E0

(ω2 − ω2
0) + iγω

(3)

So we can read off the cross section in the dipole approximation:

2. From the handout on the multipole expansion for radiation, work through the details for
the expansion in the case of electric moments, i.e. for ~r · ~E. Do this by considering the
expansion in the intermediate zone, and matching onto the behavior in the radiation zone.
(This is more or less done in the handout, posted on the web, but some details are missing
and some formulae may not be reliable at the level of constant factors, etc.)You don’t need
to be excessively detailed, but try to make clear the connection of the terms in the multipole
expansion developed in the intermediate or induction zone and the behavior in the radiation
zone.

Solution: In both cases, the crucial point is that the fields in the intermediate zone are
essentially static, so one can use a static multipole expansion. Knowing that the solutions,
in general, a spherical Hankel functions, one can then match the short distance and large
distance behaviors.

3. Jackson 10.1.

Solution: In chapter 2.5, Jackson solves the problem of a conducting sphere in a uniform
field (appropriate to the dipole approximation). The corresponding field is that of a dipole,
aligned with the field, with dipole moment E0a

3. Similarly, in 10.13, Jackson shows that

~m = −2πa3Hinc (4)

From this, it follows, as Jackson writes that:

dσ

dΩ
(n̂, ε̂; n̂0, ε̂0) = k4a6|ε∗ · ε0 −

1
2

(n̂× ε∗) · (n̂0 × ε̂0)|2 (5)



Now we can work out the cross section, summed over final polarizations, by making two
explicit choices for ε, or by using our trick for the polarization sums. The latter is easier.

Define ~A = n̂0×ε̂0; then we can simplify the expression by taking the ε’s real in the polarization
sums, and dropping the hats over ε and n:

dσ

dΩ
= k4a2

∑
pol

|ε̂iε0i −
1
2
εiεkliAkn`|2 (6)

So using ∑
pol

εiεj = δij − ninj (7)

we have
dσ

dΩ
= k4a2(δij − ninj)[ε0i −

1
2
εklin`Ak][ε0j −

1
2
εmnjnnAm] (8)

Now things simplify in the product. Note that:

niεkli = 0;n2A2 = 1; εkliε0in`Ak = n0 · n (9)

and
[n̂× (n̂× ~A)]2 = [n̂ · (n̂0 × ε̂0)]2 (10)

gives Jackson’s expression

dσ

dΩ
= k4a2[

5
4
− |ε̂0 · n̂|2 −

1
4
|n̂ · (n̂0 × ε̂0)|2 − n̂0 · n̂] (11)

b. So now for linear polarization, taking n̂0 = ẑ, ε̂0 = x̂, we have

ε̂0 · n̂ = sin θ cosφ n̂0 · n̂ = cos θ n̂ · (n̂0 · ε̂0) = sin θ sinφ (12)

Jackson’s result follows with a little algebra.


