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The Lienard-Wiechart Potentials

We can derive the scalar and vector potential for a point charge
starting with the expressions we wrote for the scalar and vector
potentials,

φ(~x , t) =

∫
d3x ′dt ′

1
|~x − ~x ′|

ρ(~x ′, t ′)δ(t − t ′ − 1
c
|~x − ~x ′|). (1)

~A(~x , t) =

∫
d3x ′dt ′

1
|~x − ~x ′|

~J(~x ′, t ′)δ(t − t ′ − 1
c
|~x − ~x ′|). (2)

and the charge and current distributions we wrote for point
charges:

ρ(~x , t) = qδ(~x − ~xo(t)) ~J(~x , t) = q~vo(t)δ(~x − ~xo(t)) (3)

where ~xo(t) is the position of the particle at time t , and ~vo is its
velocity.
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We just need to figure out how to do the integral over the
δ-function. For a δ-function, the most we care about is its
behavior near the point where its argument vanishes. We called
tR the solution to this condition,

tR = t − 1
c
|~x − ~xo(tR)|. (4)

What is somewhat complicated about this equation is that it is
an implicit equation for tR. We can solve it, however, once we
know the trajectories of the charged particle. At time
t ′ = tR + (t ′ − tR) near tR, we can Taylor expand the position:

~xo(t) ≈ ~xo(tR) + (t ′ − tR)~vo(tR) (5)
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Using this, we can write:

|~x − ~xo(t ′)| ≈ |~x − ~xo(tR)− (t ′ − tR)~vo(tR)| (6)

Call ~R = ~x − ~xo(tR); then

|~x − ~xo(t ′)| ≈ (R2 − 2 ~R · ~vo(t ′ − tR))1/2 (7)

≈ R−
~R · ~vo

R
(t ′ − tR)

So finally, the argument of the δ-function is:

δ([t − 1
c
R− tR

1
c
~vo ·

~R
R

]− t ′(1− 1
c
~vo ·

~R
R

)) (8)
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Remember that t ′ is the integration variable and note that t ′

appears only in the second set of terms. The δ function still
vanishes when t ′ = tR. But what we also need is that:

δ(a(t ′ − tR)) =
1
a
δ(t ′ − tR)). (9)

So from this we obtain:

φ(~r , t) =
q

R− 1
c~vo · ~R

(10)

~A(~r , t) = q~v
1

R− 1
c~vo · ~R

(11)

where in each case, the quantities on the right hand side are
evaluated at the retarded time.
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Evaluating the Fields

Our index notation is particularly effective in evaluating the ~E
and ~B fields of a point charge. We need to evaluate:

~E = −∂
~A
∂t
− ~∇φ ~B = ~∇× ~A. (12)

We need to be careful, however, because tR is implicitly a
function of ~x . So when we take derivatives with respect to ~x , we
need to differentiate not only the terms with explicit ~x ’s, but also
the terms with tR. So we start by working out these derivatives.
Differentiating both sides of:

tR = t − 1
c
|~x − ~xo(tR)| (13)
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Remembering that

|~x − ~xo(tR)| = ((xi − xoi)
2)1/2 (14)

gives

∂i tR = −1
c
Ri

R
+
~vo(tR) · ~R
R

∂i tR (15)

Physics 214 2011, Electricity and Magnetism The Lienard-Wiechart Potentials and the Fields of Moving Charged Particles



Solving for ∂i tR:

∂i tR = − Ri

cR
1

1− ~vo(tR)· ~R
R

(16)

It will also be useful to have a formula for ∂iR. From

R = c(t − tR) (17)

we have
∂iR = −c∂i tR. (18)
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So now we can start taking derivatives.

∂iφ = − c
(Rc − ~R · ~v)2

∂i(Rc − ~R · ~v) (19)

Now
∂i ~R · ~v = ∂i(rj − xoj(tR))ẋoj(tR) (20)

= ẋoi − ẋ2
oj∂i tR −Rj ẍoj∂i tR

So

∂iφ = − qc
(Rc − ~R · ~v)2

(−c∂i tR + v2∂i tR + ~R · ~a∂i tR − vi) (21)
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Using our expression for ∂i tR gives:

∂iφ =
−qc

(Rc − ~R · ~v)3

[
−c2Ri + v2Ri + ~R · ~aRi − vi( ~R · ~v − cR)

]
(22)

With a bit more algebra, one can show:

∂~A
∂t

=
qc

(Rc − ~R · ~v)3
(23)

[
(Rc − ~R · ~v)(−~v +R~a/c) +

R
c

(c2 − v2 + ~R · ~a)~v
]

and combining these, you obtain:

~E(~r , t) = e
[

n̂ − ~v
γ2(1− ~v · ~n)3R2

]
+ e

[
n̂ × [(n̂ − ~v)× ~̇v ]

(1− ~v · ~n)3R

]
(24)

where n̂ =
~R
R . All quantities on the right hand side are to be

evaluated at the retarded time.
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Similarly,
~B =

1
c
R̂ × ~E(~r , t). (25)

Exercise: Fill in the details of the calculations of ~E and ~B,
using the index notation as above.
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More Covariant Derivation

The Green’s function can be written in a covariant-looking
fashion:

G(x) = 2δ(x2)θ(x0) (26)

To check this, note

δ(x2) = δ(t2 − ~x2) (27)

This has roots at t = ±|~x |; because of the θ function, we keep
only the positive root. Then using the rules for δ-functions of
functions,

G(x) =
1
t
δ(t − |~x |)θ(t). (28)
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So
Aµ(x) =

∫
d4x ′G(x − x ′)jµ(x ′) (29)

We can also write the current associated with a charge in the
covariant manner:

jµ(x) =

∫
dτuµ(τ)δ(x − x0(τ)) (30)

(again, you should check the components if this is not familiar).
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So we have

Aµ(x) = 2e
∫

d4x ′
∫

dτuµ(τ)θ(x0 − x0
0 (τ))δ((x − x0(τ)2) (31)

where we have used the δ-function in jµ. To do the τ integral,
we note:

∂

∂τ
(x − x0(τ))2 = −2uµ(x − x0)µ (32)

so
Aµ = e

uµ(τ)

u · (x − x0)
(33)

which is what we found previously. (Note, due to the δ function,
R = 0).
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Some Checks of These Results

We should be able to reproduce our earlier results for radiation
by a dipole and for the fields of a particle in uniform motion.
Consider, first, a non-relativistic particle undergoing
acceleration. For ~E , we have

~E(~x , t) ≈ e
n̂ × (n̂ × v̇)

R
(34)

=
e
r

[n̂(n̂ · ~̈p)− ~̈p].

This is our earlier result (similarly for ~B; again, everything on
the right hand side is evaluated at the retarded time).
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Particle in Uniform Motion

As in chapter 12 of Jackson, we consider a particle moving
along the x axis with velocity v , and observe its motion at the
point (0,b,0) at time t . The crucial issue is to keep track of the
retarded time in our expression for ~E . We can do this as in
Jackson’s 14.2, or we can proceed by actually solving for the
retarded time, which is instructive. The retarded position and
time can be labeled

(t ′, vt ′,0,0) (35)

and satisfies:

(t ′ − t)2 − (b2 + v2t ′
2
) = 0; Rµ = (t − t ′, vt ′,b,0). (36)
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This is a quadratic equation for t ′. The solution is not
particularly pretty:

t ′ =
2t −

√
4t2 + 4(b2 − t2)(1− v2)

2(1− v2)
(37)

(note that the negative sign root of the quadratic equation is
necessary so that t ′ < t).

= γ2t −
√

b2γ−2 + v2t2
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To determine the electric field, we need n̂ · ~R:

n̂ =
(−vt ′,b,0)√

b2 + v2t ′2
; n̂ · ~v =

v2t ′√
b2 + b2t ′2

. (38)

Also, n̂ · ~v R = v2t ′, so

(R − n̂ · ~Rv) = (t − t ′− v2t ′) = t − (1− v2)t ′ =
√

b2γ−2 + 4v2t2

(39)
= γ−1

√
b2 + 4v2γ2t2

So, for example,

Ey =
eγb

(b2 + γ2v2t2)3/2 (40)

as expected.
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Energy Emission by an Accelerating Particle

In the frame where the particle is at rest at a given instant, the
energy emitted in a time interval dt is just what we found earlier
(and is given again by our formulas above)

dE =
2e2

3
v̇2dt (41)

The total momentum radiated in a similar time interval is zero.
This is easily seen by considering the stress tensor. The
momentum flux in the i ’th direction.

Tij = EiEj + BiBj −
1
2
δij(~E2 + ~B2). (42)

So
niTij = −1

2
nj(~E2 + ~B2). (43)

(We have used the transversality of the radiation field).
Integrated over angles, this gives zero (~E → ~E , ~B → −~B) under
~n→ −~n).

Physics 214 2011, Electricity and Magnetism The Lienard-Wiechart Potentials and the Fields of Moving Charged Particles



So dP0 is the time component of a four vector, but dP0

dt is the
same in any frame, i.e. it is a scalar. We can see this by writing:

dPµ = −2
e2

3
duν

ds
duν
ds

dxµ = −2e2

3
duν

ds
duν
ds

dxµ (44)

(check in rest frame!). We can write

dP0

dt
= −2

e2

3c3m2
dpν

ds
dpν

ds
(45)

(Lorentz invariant, as claimed earlier).
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After some algebra,

dpν

dτ
dpν

dτ
= m2γ6[(v × v̇)2 − v̇2] (46)

and

P ≡ dP0

dt
=

2
3

e2

c
γ6[(v × v̇)2 − v̇2]. (47)
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Comparison of Linear, Circular Acceleration

From these formulas, one can see that, for a given applied
force, particles in circular motion radiate much more rapidly
than particles in linear motion. Again writing

P = −2
3

e2

m2
dpµ

dτ
dpµ
dτ

(48)

we have, for linear motion,

P =
2
3

e2

m2

(
d~p
dτ

)2

−
(

dE
dτ

)2

(49)

but dE
dτ = d

dτ γ = v̇vγ3, while dp
dτ = v̇γ3 so

P = −2
3

e2

m2c3

[(
d~p
dτ

)2

− β2
(

dp
dτ

)2
]

(50)
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So we can compare linear, circular acceleration.
Linear:
dE
dx ≈

dp
dt , so

P =
2
3

e2

m2c3

(
dp
dt

)2

. (51)

Circular:
|d~pdτ | = γω|~p|, so

P =
2
3

e2c
ρ2 β4γ4 (52)

Reason why circular accelerators for electrons problematic.
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Now we look at the radiation in more detail, particularly the
angular and frequency distribution. To do this we return to the
expression for the ~E field (radiation part):

~E(~r , t) = e

[
n̂ × [(n̂ − ~v)× ~̇v ]

(1− ~v · ~n)3R

]
(53)

and recall ~S = n̂|~E |2, so

~S · n̂ =
e2

4πc
1

R2

∣∣∣∣∣
[

n̂ × [(n̂ − ~v)× ~̇v ]

(1− ~v · ~n)3R

]∣∣∣∣∣
2

(54)

Note that in n.r. limit, denominator is one, but in ultrarelativistic
limit, the denominator vanishes in the forward direction – the
radiation is highly peaked.
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It is convenient to change variables so that integrals over time (e.g.
for the total energy) are written in terms of the retarded time.∫

dt =

∫
∂t
∂t ′

dt ′ (55)

Recall
∂t ′

∂t
= (1− n̂ · ~v)−1. (56)

(from R = |~x − ~x0(t ′),
∂R
∂t′ =−~v ·~R

R , so, since t ′ = t − R,

∂t ′

∂t
= 1− ∂R

∂t ′
∂t ′

∂t
, (57)

giving the result above. So, in particular,

dP(t ′)
dω

= R2~S · n̂(1− ~v · n̂). (58)
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Motion in a straight line (linear accelerator)

Here ~v × d~v
dt = 0.

dP(t ′)
dω

=
e2

4π
v̇2 sin2 θ

(1− v cos θ)5 . (59)

For v → 1, the denominator is

1− v +
1
2
θ2 ≈ 1

2
(γ−2 + θ2) ≈ γ−2

2
(1 + γ2θ2)

again indicating the strong forward peaking; θ ∼ γ−1.
Integrating over angles,

P(t ′) = γ6 2
3

e2v̇2

c3 (60)
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The integrals above are elementary. For example∫
dθ
θ3

2
v̇2

(1 + γ2θ2)5 (61)

= γ6 v̇2

2

∫ ∞
0

dx
x3

(1 + x2)5 =
v̇2

24
.
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Circular motion

Highly peaked in angle as before. Take ~b⊥~̇v . Evaluate:

dP(t ′)
dΩ

=
e2

4πc
|n̂ × [(n̂ − ~v)× v̇ ]|2

(1− n̂ · ~v)5 . (62)

The numerator may be written, using our identity for ε’s (in
particular, |~A× ~B|2 = |~A|2|~B|2 − (~A · ~B)2):

|n̂ × [(n̂ − ~v)× v̇ ]|2 = |(n̂ − ~v)× ~̇v |2 − |n̂ · [(n̂ − ~v)× ~̇v ]|2 (63)

= (1 + v2 − 2n̂ · ~v)~̇v − (n̂ · ~̇v)2 − |n̂ · (~v × ~̇v)|2.

Taking ~v along the z axis, and ~̇v along the y axis, and
n̂ = (cos θ, sin θ cosφ, sin θ sinφ)),

dP(t ′)
dΩ

=
e2

4πc3
|~̇v |2

(1− v cos θ)3 [1− sin2 θ cos2 φ

γ2(1− v cos(θ))2 ]. (64)
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Again, highly peaked in forward direction. Integrating over
angles as before,

P(t ′) =
2
3

e2|~̇v |2

c3 γ4. (65)

To compare with linear acceleration, we write in terms of

d~p
dt

= γm~̇v (66)

so

P(t ′) =
2
3

m2 e2

c3 γ
2~̇p2. (67)

This is larger than the linear case by γ2 for the same force.
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Distribution in Frequency (and angle)
I’ll follow Jackson and define (not to be confused with the vector
potential)

~A =
( c

4π

)1/2
R~E (68)

so
dP
dΩ

= |A(t)|2. (69)

Fourier transforming, following Jackson’s convention:

f (t) =
1√
2π

∫ ∞
−∞

dωe−iωt f (ω) (70)

we have, for the total energy radiated during the course of the particle
motion:

dW
dΩ

=

∫ ∞
−∞
|~A(ω)|2dω (71)

≡
∫ ∞

0

d2I(ω, n̂)

dωdΩ
dω

where, since ~A(ω) = ~A∗(−ω)

d2I
dωdΩ

= 2|~A(ω)|2. (72)
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We can calculate ~A directly given knowledge of the trajectory.

~A(ω) =

(
e2

8π2c

)∫ ∞
−∞

eiωt

[
n̂ × (n̂ − ~β)β̇

(1− ~β · n̂)2

]
dt (73)

(I have given in and used Jackson’s ~β notation). Note that the
quantities on the right hand side are to be evaluated at the
retarded time, but here we can just change variables in the
integral.

dt ′

dt
= (1− ~β · n̂)−1. (74)

When we do this, we replace eiωt by eiωt ′−R(t ′)/c ≈ eiωt−n̂·~r(t ′) (~r
is the position of the particle).
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So we are left with

~A(ω) =

(
e2

8π2c

)1/2 ∫ ∞
−∞

dteiω(t−n̂·r(t)/c)

[
n̂ × (n̂ − ~β)β̇

(1− ~β · n̂)2

]
(75)

Amazingly the term in braces is a total derivative

d
dt

n̂ × (n̂ × ~β)× ~̇β

(1− ~β · n̂)
=

[
n̂ × (n̂ − ~β)β̇

(1− ~β · n̂)2

]
,

and after an integration by parts one obtains:

d2I
dωdΩ

=
e2ω2

4π2c
|
∫ ∞
−∞

n̂ × (n̂ × ~β)eiω(t−n̂·~r(t)/c)dt |2. (76)

As long as there is some component of ~̇v not parallel to ~v , this
dominates and at any instant, the motion can be treated as
circular. One then obtains expressions for the radiation by a
“straightforward" integration.
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Brief aside: It is interesting that eqn. 75 doesn’t involve the
acceleration. But it better vanish if ~̇β is zero. This is easy to
see; the integrand, if ~β is a constant, is

d
dt

[
n̂ × (n̂ × ~β)

1− n̂ · ~β

]
eiω(t−n̂·~r) (77)

(here, and above, it is important that ~̇r = ~β). The integral thus
vanishes.
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To set up the problem, it is helpful to set up coordinates, e.g. as
in Jackson, and to work out explicitly the various quantities
appearing here. Taking

~r = x̂ sin(ωt/ρ) + ŷ cos(vt/ρ) (78)

and taking the vector n̂ in the (x , z) plane

n̂ = x̂ cos θ + ŷ sin θ (79)

(I am following Jackson in making a slightly unconventional
choice for θ, but it makes θ → 0 the region where most of the
radiation lies). It is also helpful to define two polarization
vectors:

ε̂‖ = ŷ ; ε̂⊥ = ẑ sin θ − x̂ cos θ (80)

one can work out all of the quantities appearing in the
integrand. The results can be expressed as modified Bessel
functions.
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