
Physics 214. Electricity and Magnetism Professor Dine

Winter 2011: MIDTERM EXAM

Do Three of four problems: fourth will be graded for Extra Credit

Problem 1
a) For a waveguide with a square cross section (each side of length a), with dielectric constant
ε and magnetic permeability 1, write down the lowest TM mode. For this mode, determine the
dispersion relation and cutoff frequency.

Solution: For TM modes, the boundary condition is simple: Ez = ψ = 0. One can just start with
the wave equation [

∂2

∂z2
+ ~∇2

t −
ε

c2

∂2

∂t2

]
ψ(~xt)eikz−iωt = 0. (1)

so [
εω2

c2
− k2 + ~∇2

t

]
ψ(x, y) = 0. (2)

We can write down the solutions simply (if this is not clear, you should go through the exercise of
separating variables):

ψ = Amn sin(
nπx

a
) sin(

mπy

a
). (3)

(compare this with the problem of the infinite square well in two dimensions in quantum mechanics,
with which it is mathematically identical), with

εω2

c2
= k2 +

π2

a2
(m2 + n2). (4)

This is the dispersion relation. One can use it to calculate the phase and group velocities. The
requirement that k2 is positive means:

ω2 > ω2
c =

c2

ε

π2

a2
(m2 + n2). (5)

b) Evaluate the transverse components of the electric and magnetic fields for this mode, using

~Et =
i

εω2 − k2

[
k~∇tEz − ωẑ × ~∇tBz

]
(6)

and
~Bt =

i

εω2 − k2

[
k~∇tBz + εωẑ × ~∇tEz

]
(7)

Verify that ~∇ · ~E = 0. Calculate the Poynting vector (component along the guide).

Solution: This is a pretty simple plug in. E.g.

~Et =
ikAmn
εω2 − k2

(
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mπ

a
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a
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a
) + ŷ

nπ

a
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a
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nπy

a
)
)
. (8)
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ŷ
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a
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a
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a
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)
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(9)



It is straightforward to check ~∇ · ~E = ~∇ · ~B = 0 and to construct the Poynting vector. E.g.

~∇ · ~E = ikψ − ikAmn
εω2 − k2

(
(
mπ

a
)2 sin(

mπx

a
) sin(

nπy

a
) + (

nπ

a
)2 sin(

mπx

a
) sin(

nπy

a
)
)
. (10)

This vanishes, due to the dispersion relation.

~∇ · ~B ∝ cos(
mπx

a
) cos(

nπy

a
)− cos(

mπx

a
) cos(

nπy

a
) = 0. (11)

c) If the skin depth is δ and the conductivity σ, estimate, without deriving or quoting complicated
formulas, the attenuation length of signals in the guide. Remember the basic formula that the
power loss per unit area is

dP

da
=
ωδ

4
|B‖|2. (12)

The result should depend just on σ, δ, and a.

Solution: A very crude estimate for dP
da assumes that k2 ∼ εω2 ∼ γ2. Then B ∼ ψ ∼ Et, so∮

dP

da
≈ aωδψ2. (13)

On the other hand, the energy flux behaves as εψ2a2. So

1
β

=

∮
dP

da∫
d2aP

∼ εδω

a
(14)

Note, in particular, β ∝ 1/δ, i.e. it gets longer with δ; at the same time it grows with a (reflecting
the ration of the perimeter to the area).

Problem 2.
a. Work out the components of the tensor Fµν = ∂µAν − ∂νAµ in terms of those of ~E and ~B.

Solution:
F0i = ∂0Ai − ∂iA0 = −∂0A

i − ∂iA0 = Ei

Fij = −∂iAj − ∂jAi = −εijkBk.

b. Work out the components of

F̃µν =
1
2
εµνρσF

ρσ. (15)

Solution:

F̃0i =
1
2
ε0ijkF

jk

= −1
2
ε0ijkεjk`B

`

= −1
2

(δi`δkk − δikδ`k)B`

= −Bi

. Similarly,

F̃ij =
1
2
× 2εij0`F 0`



= ε0ij`F
0`

= −εij`E`.

c. Imagine you were told that Maxwell’s equations were:

∂µF
µν = 0 ∂µF̃

µν = 4πJνmag. (16)

Write the equations in terms of ~E and ~B, and the charge density and three-vector current. Interpret.
Explain why this is just a renaming of the fields and charges/currents we know.

Solution: Using our result in part (b), these equations read:

−~∇ · ~B = 4πρmag ~∇× ~E = 4π ~Jmag −
∂ ~B

∂t
.

These become Maxwell’s equations if we make the replacement:

~E → ~B; ~B → − ~E; ρmag → ρ; ~Jmag → ~J

This is slightly different then Jackson, whose equations correspond to

∂µFF̃
µν = −4πJνmag.

As a result, his duality transformation is slightly different. So if there are only magnetic charges,
electrodynamics is equivalent to what we usually write.

Problem 3. An electron of energy 200 GeV in the lab collides with a positron of energy x GeV
producing a Z meson, which has a mass of 91 GeV. What is x? What is the velocity of the Z
meson? (Viewed in the lab frame, i.e. the frame in which the electron and positron have the
specified energies?). You can neglect the mass of the electron in this problem (what does this say
about the energy and momentum – use units with c = 1!!) Remember that in the rest frame of the
Z meson, the total energy is 91 GeV.
bf Solution:
The total energy in the center of mass must be M2

Z . This is most easily evaluated using invariants.
In particular, we know that

s = (pe + pē)2 (17)

is the center of mass energy squared, as can be seen by going to the rest frame of the system. pe, pē
are the four momenta of the electron and positron. Neglecting the mass of the electron,

s = 2pe · pē = 2(EeEē − ~pe · ~pē) = 4|~pe||pē| (18)

where we have noted that the electron and positron move in opposite directions in the lab frame,
and the momenta and energy are approximately equal. So

m2
Z = 4x× 200 GeV. (19)

So
x = 10.4GeV. (20)

The velocity of the center of mass in the lab frame is the total momentum divided by the energy,
or

v = 189.6/210.4 ≈ 0.9. (21)



Problem 4.
We studied the motion of a relativistic charged particle in perpendicular electric and magnetic

fields, using the trick of transforming to a particular frame. Consider the problem of a non-
relativistic particle in such fields, but instead of being too clever, just write the equations of motion
and solve. You may want to simply guess the form of a solution (remembering what we found in
the relativistic case – uniform drift along the ~E × ~B direction), and simply plug in and determine
the form of the various coefficients in your guess.

Solution: This is just an exercise with the Lorentz force law. Taking ~E = Ex̂; ~B = Bŷ, we have

m
dvz
dt

= qvxB; m
dvx
dt

= qE − qvzB;
dvy
dt

= 0. (22)

It is easy to see (e.g. by decoupling the second and third equations by taking an additional time
derivative, or just plugging in a guess motivated by our discussion in class) that

vy = constant; vx = a cos(ωt); vz = a sin(ωt) +
E

B
. (23)

Here ω is the cyclotron frequency, ω2 = q2B2

m2 . So indeed we have constant drift in the direction
~E × ~B, drift along the direction of E, and circular motion about the direction of the B field.


