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We seek a more systematic treatment of the multipole
expansion for radiation. The strategy will be to consider three
regions:

@ Radiation zone: r > X >> d. This is the region we have
already considered for the dipole radiation. But we will see
that there is a deeper connection between the usual
multipole moments and the radiation at large distances
(which in all cases falls as 1/r).

@ Intermediate zone (static zone): A > r > d. Note that time
derivatives are of order 1/\ (¢ = 1), while derivatives with
respect to r are of order 1/r, so in this region time
derivatives are negligible, and the fields appear static.
Here we can do a conventional multipole expansion.

© Near zone: d >> r. Here is is more difficult to find simple
approximations for the fields.
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Our goal is to match the solutions in the intermediate and
radiation zones. We will see that in the intermediate zone,
because of the static nature of the field, there is a multipole
expansion identical to that of electrostatics (where moments
are evaluated at each instant). This solution will match onto
outgoing spherical waves, all falling as €, but with a
sequence of terms suppressed by powers of d/\. So we have

two kinds of expansion going on, a different one in each region.
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Let’s first review some of the special functions we will need for
this analysis. The basic equation which will interest is the
Helmholtz equation (similar to the Schrodinger equation):

(V2 + w?)h(X,w) = 0. (1)

One can expand the solutions for fixed r, in spherical
coordinates:

Zme Yém 0 ¢) (2)

f,m obeys:

L2l O o
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The f,(r)’s are “spherical Bessel functions," ,(r) = gu(kr). The
g¢’s are rather nice functions (you will encounter them in
quantum mechanics in studying scattering theory). Typically
they are presented as four types, the j/’s, n/’s, and h,’s,
spherical Bessel, Neumann, and Hankel functions. They are
distinguished by their behaviors at the origin and at cc. The ji’s
are regular at the origin, n,’s are singular; both behave like
sines at co. There are actually two types of h’s,

WD = jo+ ing; h®) = ji — ing. (4)

These behave as e** at oo, corresponding to outgoing and
incoming spherical waves. They are both singular at the origin
(a suitable linear combination is not).
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. sinx _cos(x) 1y, "

Jo(x) === mo(x)=——"— " (x)=— (5)
with relatively simple asymptotics:
. xt (2¢ — 1)
, 1 . b 1 b
X — 00 fi(x) — X sin(x — E) ne(x) — % cos(x — ?). (7)
iX .

hg) N (_i)£+1 67 hf) s (i)é-H e® (8)

With e~ ™! time dependence, hg” ~ e~ Wtk s an outgoing
spherical wave.
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Green’s function for the Helmholtz equation:

(V2 + K)G(X, X)) = —6(X — X') 9)
S, eik\)?—)?’|

=" 9ulr, ") Ym0 ) Yom(09)

Z,m

where gy(r,r') = ikjg(kr<)h§1)(kr>).
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Jackson proves this by looking at the equations for the
coefficients of each Y. But we can see why this must be
correct rather simply. First, for r < r/, say, for each ¢ the
equation for g, is the same equation we studied above, in both
rand r'. As r — 0, the result should be non-singular, so we
must take the j,’s. For r’, as r' — oo, we would like outgoing
spherical wave behavior, which fixes hy). The argument is
symmetric in r and r’, which explains the r-, r~.
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Now we can fix the coefficients by requiring that as k — 0, this
should go over to

! 1 < ‘ * A
%2e+1r><,>> Yim(6',0") Yem(0, ¢). (11)

Examining the expansions of h,j for small argument, yields the
coefficient above:

(ko) [ (20— 1)
PN <_ (krs )+ ) (12

RN NI
20411 \ s
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So we are ready to attack the problem. We seek a
generalization of the static multipole expansion. We will follow a
slight modification of Jackson’s strategy. We start by
considering the intermediate zone. It turns out to be simpler to
work with E and H (I will follow Jackson in using H rather than
B).

E and H are vector quantities. It is helpful to start by
considering the scalar quantities 7 - E and 7 - H. The first, in
electrostatics, can be completely determined from the charge
distribution; this is the same problem we will encounter in the
intermediate zone. 7 - H is similar. We will focus mostly on the
first.
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Since . . L .
V2F-E=F-V2E+2V-E=7F.-V?E (13)

}:o. (14)

These are scalar quantities, so they can readily be expanded in
spherical harmonics:

F-E ="K+ )ag(t,m)gem(kr)Yem(Q).  (15)
Z,m

and similarly for H, it follows that:

~
m I

(V2 + w?) {

and similarly for 7 - H.
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Now for the problems which typically interest us, in which we
have a localized source of radiation, of size much smaller than
a wavelength, we can rather easily figure out the coefficients
ag. Consider, first, the “intermediate zone", A > r > d. In this
regime, the fields are essentially static. You can see this by
comparing derivatives:

o 1 10 1

—~ = -~ . 1
or r cot A (16)
So we can neglect time derivatives in this regime. But this
means that . .
E~-Vo¢ (17)
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In this static regime,

~ 3./ p(}/)
o~ /dxw 4 (18)

(this also follows from the form of the Green’s function of the
Helmholtz equation in the limit that we can neglect k). Then

99

(19)
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But we know the form of ¢ far from a localized charge

distribution: 4 Yor(Q)
>\ T QemYem
¢(X) - 2€ + 1 rg+1 (20)
4,m
We can construct 22, so for small r,
/+1 1
agm\/££+1gg kl’ 2£+1rz+1qu (21)
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Now we want to match to the general solution. Away from

r =0, we have
ge(kr) = RV (kr) (22)

due to the requirement of outgoing spherical wave boundary
conditions. Now we match, noting that (egns. 9.85,9.88 in

Jackson
) RO (20 —1)1
A v (23)
SO
ckt+2 141\ 12
aE(E’m):i(zzﬂ)u( ] ) em: (24)
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Knowledge of 7 - E determines H and E, through the usual
equations for plane waves in free space:

- s = =

H:—RVXE E:RVXH (25)
So, e.g., for the“TM" (7 - H = 0) case, let’s solve the full set of
equations. Take (a guess)

Hem = Aun(r)LYom (26)

Note first that EA(r) = 0. Using the language of quantum

mechanics, this is because A(r) is rotationally invariant, and L

is the generator of infinitesimal rotations. But it follows from:
Xk 8A(f)

—fEijk)(jakA(l’) = _ie"jkxj778r =0. (27)
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Then it is easy to see that:

i

7 E= E?- (V x H) = ifiéijk/‘\emajl-k Yim (28)

k

1. 1
ELZAgm(r) Yom = 2 Aunl(l+ 1) Yim.

so that the connection of A(r) and the expansion coefficients of
T - E can be read off immediately (Jackson’s 9.122). You can
check that this configuration (with the appropriate H, as above)

solves the full set of Maxwell’s equations; similarly for the "TE"
modes.
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It is natural to define “vector spherical harmonics":

Xim(0,6) = g(gmmm(e, o). (29)

From the properties of the spherical harmonics, it is easy to see
that:

/)?;m : )?Z’m’ dQ = 56,6’5m,m’ (30)
/)?gm (7 x Ky = 0 (31)

(the last follows from an integration by parts and use of the
commutation relations of L and r).

H =" Aum(r)\/(l + 1) Xem. (32)
m
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Following your text, we can derive this more directly. Rather
thag work with A and ¢, it is convenient to work with Fq- E and
r - H directly. We focus on the latter. Defining a field, E’ which is
divergence free, .

E-E+ ] (33)

WeQ

we have the Maxwell equations (in Jacksons 9.160, set Z, = 1,
and M = 0)
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Now take the curl of the third equation, substitute for V x H
from the fourth, to give:

(V2 + K)E' = —i/kV x (V x J). (35)
(There is a similar equation for H). So

(V2 + K3)F-E' = —i/k (L-V x J). (36)
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So now we can solve for 7 - E’ using the Green’s function for the
Helmholtz equation:

r-E'(x)= ! Aoy [V x J(X)d®x'.  (37)
T 4rnk X — X| ’
Now o B o
L-VxJd=—i(FxV) (VxJ) (38)

can be simplified using our e identity trick.
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We need to be careful about the ordering of the derivatives.
The expression above is:

—iejkekim(ri0j0rdm) (39)
= —i(r00id; — 19;0;d;)
= inV2d; —if - V(Y - J)
= iV3(rd)) — 2iV - J — iF - V(V - J)
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This can be rewritten:

Zﬁxj:/vz(F-j)—iﬁ(rzﬁ-Z\) (40)
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So using this, we have (using the expansion of the Green’s
function in spherical Bessel functions, egns. 9.95-9.97 in

Jackson:
ag(t,m) = (KN)Y; m [ V3(F- J) — —7—(r2p) a®x.

\/7//15

Integrating by parts on the V2 term twice, and using the wave
equation (without sources) gives a factor of k2; but we can
actually drop this term in the case of a localized source, leaving
our earlier expression for ag (using the small argument limit of
the Bessel functions).

Exercise: Verify the matching for the electric dipole and
quadrupole moments, i.e. check that these results reproduce
our calculation of the dipole and quadrupole radiation, checking
the connection between the large and small distance
expressions.
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Applications

Jackson considers two applications of this method. First are
cases where low moments vanish. This happens in some
atoms and nuclei. Alternatively, it is interesting, for example, for
antennae when the wavelength is not too different than the size
of the antenna. (Think of FM, 100 MHz).

Jackson also (in 9.4) discusses the problem of determining the
current in an antenna, and shows that this is actually a
boundary value problem, where one must solve simultaneously
for the current and the field.
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