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The structure of the modes in a waveguide depends on the
geometry of the guide (assuming perfectly conducting walls.
For definiteness we will write formulas for TM modes; for TE
modes, see your text and homework.
[In these notes, I revert to SI units, as in your text]
With ψ = Ez , basic equation is

(∇2
t + γ2

λ)ψλ = 0. (1)

One has then

~Et = ± ik
γ2
~∇tψ; ~Bt =

1
iω
~∇t ~Et . (2)
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In addition

γ2 =
ω2µε

c2 − k2. (3)

from which we read off:
1 Cutoff frequency:

ωλ =
cγλ√
µε

(4)

(restoring µ)
2 Phase veclocity:

vp =
ω

kλ
=

c
√
µε

1√
1− (ωλω )2

>
c
√
µε
. (5)

The group velocity is

vg =
dω
dk

=
c2

µε

1
vp
. (6)
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Energy flow: Want to determine Poynting vector (determines
energy flowing per unit area per unit time along the guide);
integrate over cross section per unit time (energy flowing per
unit time) Fully determined in terms of ψ. [We will do this
analysis one mode at a time] Can also calculate the energy
density per unit length, and see that ratio is the group velocity.
Energy attenuated in the walls: Can calculate the energy flow
into the walls; integrating over the perimeter gives energy
attenuated per unit length per unit time, dP

dz . Result will be
proportional to skin depth times geometrical and frequency
dependent factors, which can be worked out, again, mode by
mode. Exponential decay of signal with distance.
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Poynting vector, Energy Flow

ẑ · ~S =
1
2

ẑ · (~E × ~H∗). (7)

Substituting the explicit forms:

ẑ · ~S =
ωk
2γ4 ε|~∇tψ|2. (8)

In the integral of the energy flux over the area, we can integrate
by parts:

P =
ωk
2γ4 ε

∫
A
ψ∗∇2

t ψd2a (9)

so

P =
1
2
√
µε

(
ω

ωλ

)2(
1−

ω2
λ

ω2

)1/2

ε

∫
A
ψ∗ψd2a. (10)
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Energy Loss

dP
dz

= − 1
2σδ

∮
C
|n̂ × ~H|2d` (11)

= − 1
2σδ

(
ω

ωλ

)2 ∮ 1
µ2ω2

λ

|∂ψ
∂n
|2d`.

On has, from the equation for ψ that the integral is of order∮
1

µ2ω2
λ

|∂ψ
∂n
|2d` ∼ ξλµε

C
A

∫
A
|ψ|2d2a. (12)

This allows an expression for the attenuation constant,

P = e−βλz (13)

in terms of geometrical factors and the skin depth.
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Energy Loss in Cavities

Define quality factor, Q by:

E(t) = E0e−
ω0
2Q e−iω0t (14)

which exhibits Breit-Wigner shape.
Q can be calculated like βλ. One calculated the energy density,
and compares with the power loss, where one has to integrate
over all of the sides. One finds

Q =
d
δ

1
2

(
1 + ξλ

Cd
4A

)
. (15)

Small δ → large Q.

Physics 214 2011, Electricity and Magnetism Waveguides and Resonant Cavities: Energy Loss



Application: Axion Search Experiment

If axions constitute dark matter, equations of EM modified, with
new terms, such as

~∇× ~B = −∂
~E
∂t

+
ȧ(~x , t)

fa
~B. (16)

Last term, if large ~B and if the universe if filled with axion field:
source for ~A, oscillating at frequency of a(~x , t); this frequency is
mac2/~. In practice, microwave range.
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